ASSESSMENT AND MONITORING OF THE FISHERY RESOURCES AND THE ECOSYSTEMS IN THE STRAITS OF SICILY

HOME  

English

Italiano

العربية

  Food and Agriculture Organization of the United Nations
  Citation:
 

Parapenaeus longirostris (Lucas, 1846)

  SPECIES DESCRIPTION
  ECOLOGY
    Geographical distribution
    Habitats
    Migrations
  BIOLOGICAL INFORMATION
    Maximum size
    Spawning
    Length at first maturity
    Eggs, larvae and post-larvae
    Recruitment and nursery areas
    Sex ratio
    Length-weight relationships
    Maximum age and natural mortality
    Von Bertalanffy growth function (VBGF)
    Feeding behaviour
    Stock units
  EVALUATION AND EXPLOITATION
    Biomass indices from trawl surveys
    Strength of recruitment
    Stock assessment
    Fisheries
    Fishing zones and seasons
    Yield
    Fishing and discards
    Gears
    Legislation and management


Figure 62. Parapenaeus longirostris (from Fischer et al., 1987).

Class:  Malacostraca
Order:  Decapoda
Family:  Penaeidae
English name:  Deep-water pink shrimp
   

SPECIES DESCRIPTION

The deep-water pink shrimp, Parapenaeus longirostris (Lucas, 1846), is a large-sized decapod crustacean. On the carapace, there is a long furrow beginning near the eyes and present along the entire length of the carapace. The telson ends with three small, hard, sharp teeth (Figure 62). The carapace is pink–orange, with a reddish rostrum. The female gonads vary in colour, from white to dark green, depending on the stage of maturity (Fischer et al., 1987; Tursi et al., 1999).

ECOLOGY

Geographical distribution
This species has a wide geographic distribution: it is found in the Mediterranean Sea and in the Atlantic Ocean, from northern Spain to southern Angola (Tursi et al., 1999) (Figure 63). Characterized by a gregarious life, it is widespread from the coast of Asia Minor to the Spanish coast, rare on the French coast and the Sea of Marmara (Fischer et al. In Holthuis, 1987). It is also found in the Eastern (from Angola to Portugal) and Western Atlantic (from Guianas to Massachusetts).

Habitats
P. longirostris is a demersal species inhabiting sandy–muddy bottoms of the bathyal zone. It can be found at depths ranging between 20 and 700 m, but it is more abundant between 70 and 400 m depths (Fischer et al., 1987). In the Atlantic Ocean, P. longirostris is captured between 40 m and 700 m depth, with a maximum abundance between 150m and 300m (Maurin, 1965; Maurine and Carriers, 1968). In the Mediterranean Sea the greatest abundance of P. longirostris are recorded between 100 and 300 m depth (Nouar, 1985; Holthuis, 1980; Arzel et al., 1992, Audouin, 1965). The Strait of Sicily, together with the seas around Greece, is the Mediterranean region with the greatest abundance of this species (Levi et al., 1995; Abellò et al., 2002). Relatively lower P. longirostris abundance is observed in the Gulf of Lion, in the Alboran Sea, (Nouar, 1985; Maurin, 1962), in the Aegean Sea and off the coast of Gaza Strip and West Bank (Nouar, 1985). In 1954 Heldt (1954) reported the first record of P. longirostris off the Tunisian coast. In Tunisia this species can be found both in the North, East and South (Azouz, 1971; 1972) sub-regions, but it is only exploited by commercial fisheries in the north and north-east Tunisia.

Figure 63. Geographical distribution of Parapenaeus longirostris (Holthuis, 1980)
.

Migrations
P. longirostris shows a bathymetric distribution related to size: the smaller specimens are caught more frequently on the outer continental shelf (50–200 m depth) (Ardizzone et al., 1990; Spedicato et al., 1996; D’Onghia et al., 1998), whereas the larger ones are mainly distributed along the upper slope down to 500 m depth (Chaouachi and Ben Hassine, 1998; De Ranieri et al., 1998; Lembo et al., 2000).

BIOLOGICAL DATA

Maximum size
Levi et al. (1995) reported P. longirostris with a carapace length (CL) up to 41.5 mm in the commercial landings of the offshore trawler fleet fishing in the Strait of Sicily in 1989– 1990. A very close maximum size (42 mm CL for females and 35 mm CL for males) was found by Chaouachi and Ben Hassine (1998) along the northern and eastern coasts of Tunisia (GSAs 12 and 13). However, specimens from 20 to 30 mm CL for males and from 25 to 35 are generally found in the commercial fisheries landings. The maximum observed lengths in GSA 15 and 16, recorded during trawl surveys over 14 years, were 46 CL for females and 41 mm CL for males (G. Sinacori, pers. comm.).

Spawning
According to Levi et al. (1995), mature females are found in GSAs 15 and 16 all year round, although maturity peaks have been observed throughout the year: one wide peak from November to February and another in April (Figure 64). The lowest percentage of mature females appears in June–July, but continuous spawning seems to occur. Ben Meriem et al. (2001) reported that P. longirostris reproduces all year long, with a peak in June–July and a minimum in winter. The evolution of the maturity index (MI = ovary weight/CL) is indicated in Table 30.

Table 30. Evolution of the maturity index of Parapenaeus longirsotris (Ben Meriem et al., 2001)

Month
Maturity index

Jan. ‘97
3.21
Feb. ‘97
3.24
Mar. ‘97
3.45
Apr. ‘97
3.02
May ‘97
4.16
Jun. ‘97
10.1

Month
Maturity index

Jul. ‘98
4.15
Aug. ‘98
3.47
Sep. ‘98
3.29
Oct. ‘98
4.49
Nov. ‘98
2.11
Dec. ‘98
4.27


Figure 64. Variation of Maturity index (= ovary weight/CL) in the period January-June 1997 and July-December 1998 (Ben Meriem et al., 2001).

Length at first maturity
The mean size of mature specimens, corresponding to 25 mm CL, was proposed as a proxy for the size at 50% maturity for females in GSAs 15 and 16 (SAMED, 2002). The available parameters of the classical ogive at maturity are reported in Table 31. According to Ben Meriem et al. (2001), this species reproduces before the end of its first year of life.

Table 31. Length (in millimetres) at 50% maturity (L50%) and curvature parameters of the ogive at maturity, by sex, of P. longirostris in the Strait of Sicily (g – grams; n.a. – not available). GSA 12 = Northern Tunisia; GSA 15 = Malta Island; GSA 16 = South Sicily.

Author GSA

Females

Males

Remarks
L50% g L50% g

Ben Mariem et al., 2001
Samed, 2002
Ragonese et al., 2004
CNR-IAMC, 2006
Gancitano et al., 2013

12
15, 16
15, 16
16
16
20.10
n.a.
24.00
20.80
22.74
n.a.
n.a.
n.a.
0.28
n.a.
n.a.
15.43
19.00
15.60
14.27
n.a.
2.03
n.a.
1.89
n.a.
19.1<L50%<20.4 for females
Trawl surveys 1994-1999
Trawl surveys 1994-2002
Commercial catch (2003-2005)
Commercial catch (2006-2011)

Eggs, larvae and post-larvae
The small amount of information available on eggs and larvae is from outside the Strait of Sicily. Dos Santos (1998) found along the southern and southwestern coasts of Portugal the presence of higher densities of deep-water pink shrimp larvae around the 100 m isobath. According to Heldt (1938) the development of larval phases lasts about two months.

Recruitment and nursery areas
Although very small specimens were taken in trawl survey samples, from a minimum size of 5 mm CL (Sinacori, pers. comm.), the size-class at full recruitment to the sea bottom in GSAs 15 and 16, was 17 mm CL for females and 18 mm CL for males (SAMED, 2002). Fiorentino et al. (2004) provided a rough geographical mapping of nurseries in GSAs 15 and 16. The annual variability in the positions of the nurseries was low. One important nursery was located off Capo Rossetto, in the western–central part of the area, another on the eastern side of the Malta Bank, close to the 200 m isobath (Figure 65). In Tunisia the small specimens were fished in the Galith Channel (Western-North coast of Tunisia).
A preliminary mapping of the nursery areas of white shrimp in the northern side of the Strait of Sicily has identified two major areas of concentration of recruits (Fiorentino et al., 2004), both around 200 m depth: one in the central-western aprt of GSA16; one on the eastern side of the Bank of Malta (GSA15). Persistent areas of high concentration of recruits were found around 200 m depth in the waters off the central part of the Sicilian coast. Other areas can be identified with a certain degree of annual variability in the eastern and western sides of the Adventure Bank. The spatial distribution of juveniles is very similar in the two seasons and in particular the nurseries identified as stable in spring and autumn are fully stackable. Therefore, the area identified is an important nursery of white shrimp in GSA16. It is oriented parallel to the coast and has an area of approximately 700 km2 (Garofalo et al., 2011). Fortibuoni et al. (2010) have definitively confirmed the presence of stable areas of nurseries in the eastern edge of the Adventure Bank (GSA16) and Malta Bank (GSA15). Each of these nurseries is next to a spawning area so as to assume the presence of two different subunits of the local stock of the Straits of Sicily.

Sex ratio
In GSA 16, the sex ratio derived from the MEDITS Trawl Surveys from 1994 to 2004 remained stable and close to 0.5 (Fiorentino et al., 2005) (Figure 66).
In GSAs 15 and 16, a significant increase in the sex ratio with shrimp size was observed, with the number of males prevailing in the sampled population from 16 to 22 mm CL, whereas females were more abundant at carapace lengths exceeding 24 mm (SAMED, 2002). However, the sex ratio observed in the commercial catch is ranged between 0.57 and 0.67.


Figure 65. Preliminary mapping of spawning and nursery areas in the northern sectors of the Strait of Sicily (from Colloca et al., 2013).


Figure 66. Sex ratio of P. longirostris in GSA 16, calculated as the ratio of the number of females to the total number of sexed individuals, from MEDITS Trawl Survey data (redrawn from Gancitano et al. 2013).

Length-weight relationships
P. longirostris generally displays an allometric negative length-weight relationship. The parameters of the allometric length–weight relationships estimated for P. longirostris in the Strait of Sicily are reported in Table 32.

Table 32. Parameters of the length–weight relationships of P. longirostris in the Strait of Sicily.

Author GSA Sex a b Period

Levi et al., 1995
IRMA–CNR, 1999
CNR-IAMC, 2006


Ben Meriem and Hadj Mbarek, 2009

15, 16
15, 16
16


12

F+M+I
F+M+I
F
M
F+M+I
F
M
F+M+I
0.0061
0.0029
0.0027
0.0025
0.0025
0.0023
0.0031
0.002
2.2664
2.4961
2.5194
2.5398
2.5436
2.5180
2.4101
2. 556
1989-1990
1996-1998
2003- 2005


1997-1998

Maximum age and natural mortality
According to Ardizzone et al. (1990), the life cycle of P. longirostris lasts two years, with the possibility of some larger specimens entering a third year, and is characterized by high rates of growth and mortality. However, Levi et al. (1995) made the first estimate of the natural mortality of the species in the Strait of Sicily on the basis of the regression of estimated values of total mortalities (Z) on the annual total number of fishing days. The results by Levi et al. (1995) showed a value of M=0.17, which is compatible with a life cycle of a long-living species.
More recently, on the basis of a comparison netween results produced by different methods of estimating natural mortality (Chen and Watanabe; Beverton and Holt Invariants, Alagaraya), values of 1.04 for females and 1.15 for males were proposed as reference values for stock assessment purposes in GSAs 15 and 16 (SAMED, 2002). These latter estimates of natural mortality are compatible with longevities of 4–4.5 years. Also, Ben Meriem (unpublished data) indicate a value of natural mortality equals to 1.03, which is very close to that found in SAMED, 2002.

Von Bertalanffy growth function (VBGF)
The Von Bertalanffy growth function parameters, by sex, available for different areas of the Strait of Sicily are reported in Table 33.

Feeding behaviour
Tursi et al. (1999) reported that P. longirostris feeds on a wide variety of preys. During the hunting phase it eats small fish, cephalopods and crustaceans, whereas, during the digging phase, it searches in mud for prey, such as polichaetes, bivalves, echinoderms and, above all, foraminifers.

Table 33. Von Bertalanffy growth function (VBGF) parameters of P. longirostris in the Strait of Sicily (n.a. – not available). GSA = GFCM Geographical Sub-area; Wp = Winter Point, which indicates the period of the year (expressed as fraction of the year) when growth is lowest; C = factor which expressing the amplitude of the growth oscillations according to the seasonalized version of VBGF as reported in Pauly (1987).

Author GSA

Females

Males

Combined sexes

Remarks

L

K t0 L K t0 L t0 K

Levi et al., 1995

Ragonese et al., 2004

SAMED, 2002

CNR-IAMC, 2006

CNR-IAMC, 2007

Ben Meriem (unpublished data)

15, 16

15, 16

15, 16

16

16

12

 

40.9

43

 

34

42.41

 

0.71

0.68

 

0.7

0.66

 

n.a.

-0.20

 

-0.16

0.216

 

34.3

38

 

28.5

32.82

 

0.73

0.75

 

0.68

0.731

 

n.a.

-0.20

 

-0.48

-0.13

30.5

 

 

37.1

 

37.6

0.63

 

 

0.53

 

0.695

-0.19

 

 

-0.46

 

-0.17

Seasonalised with WP=0.1, C =1.0 1989-1990

Autumn 1996-1998

Spring 1994-1999

2003-2005

2003-2006

1997-1998

Stock units
The stock structure of the species in the Strait of Sicily is not well known. Levi et al. (1995) have hypothesized a flux, from east to west, of eggs, larvae and juveniles of P. longirostris carried by the Levantine Intermediate Water (LIW) current. More recently, the existence of at least two sub-populations on the northern side of the area (GSAs 15 and 16) was advanced by Camilleri et al. (2008) and Fortibuoni et al. (2010). This idea is based on the occurrence of local spawning and nursery areas that are connected by the Atlantic Ionian Stream flow (0–150 m depth range), which is considered to be the current in which the larvae and juveniles develop.
In 2013 Lo Brutto et al. (2013) provided a first study on the genetic structure of the deep-water rose shrimp in the central and eastern Mediterranean Sea, including the northern sector of the Strait of Sicily. Using radioactive and mitochondrial markers, the genetic distance and assignment methods assessed a significant and gradual differentiation from the Tyrrhenian, Adriatic, Strait of Sicily, to the Aegean area, along a west-east axis (clinal pattern). Athough some homogeneity was evident within the different population of the Mediterranean, a degree of isolation was found between different areas. The differences observed are consistent with existence of physical breaks, such as fronts (Figure 67).
Altough some minor differences were found between samples from the western and eastern side of the Strait of Sicily, for stock assessment purposes deep water rose shrimp is still considered as a single stock (Fiorentino et al., 2008).

Figure 67. Distribution of the two Amplified Fragment Length Polimorphism (AFLP) clusters of P. longirostris population sub units and the main oceanographic fronts and boundaries (STS, Siculo Tunisian Strait; AD, Adriatic barrier; Aegean or Levantine isolation) affecting genetic pattern of the deep-water rose shrimp (from Lo Brutto et al., 2013).

EVALUATION AND EXPLOITATION

Biomass indices from trawl surveys
Trawl-survey abundance indices estimated from the data of the MEDITS Trawl Surveys in GSA 16 showed a cyclical pattern, with the highest peak detected in 2009. Obvious monotonic trend can be observed in the time series (Gancitano et al., 2013) (Figures 68). An analogous trend was found in the GSA 15 although a shorter time series of data is available (Figure 68). Moreover, similar fluctuations were observed in Tunisian data from trawl surveys for the period 2000-2010 (Ben Meriem pers. comm.).
Lamboeuf et al. (1995) assessed the LIBFISH Trawl Surveys (1993–1994) with respect to the demersal resources off the Libyan coast (GSA 21); they reported a small standing stock of P. longirostris (about 173 tons). This small amount could be due to the limited sampling of bottoms deeper than 200 m. These data were recently re-analysed by Rawag et al. (2004) that provided results on P. longirostris and Penaeus kerathurus (Figure 69). Off the Libyan coasts (GSA 21) P. longirostris was found only off Benghazi (eastern sector) and from the Gulf of Sidra (Gulf of Syrta) to the Libyan–Tunisian border (western sector GSA 21) on bottoms deeper than 100 m. The camarote prawn, Penaeus kerathurus, was recorded exclusively in the western sector of GSA 21 and at depths less than 100 m.

Figure 68. Time-series of P. longirostris biomass (kg/km2) and density (number/km2) indices (MEDITS Trawl Surveys; 10–800 m depth range) in GSAs 15 and 16 (Redrawn from Ben Meriem et al., 2014)

Strength of recruitment
Density indices (DI) of recruits (individuals less than 18 mm CL) derived from MEDITS Trawl Survey data were used to estimate recruitment strength in GSA 16, assuming that recruitment occurs within the 50–200 m depth range (Gancitano et al., 2103). A cyclic recruitment pattern was evident, with peaks in 1999, 2004 and 2009 (Figure 70).

Figure 69. Biomass indices (kg/h) of the shrimps Penaeus keraturus (depth<100m) and P. longirostris (depth >100 m) combined, off the western coasts of Libya (GSA 21) (LIBFISH Trawl Surveys 1993–1994) (from Rawag et al., 2004).

Figure 70. Abundance index of recruitment of P. longirostris in GSA 16 derived by MEDITS trawl surveys.

Stock assessment
In the late1980s, the deep-water rose shrimp presented an exploitation rate (Ec=0.8) > than the optimal one (Emax=0.67; E0.1=0.66; E0.5=0.41) (Levi et al., 1995) (Figure 71).
Levi et al. (1995) predicted a more efficient exploitation of the resource in the long term as a result of reducing the fishing mortality by about 20% or by increasing the cod-end mesh size from 30 to 40 mm opening (Figure 72).
Overfishing was confirmed (0.65<E<0.75) in the late-1990s with an estimated fishing effort of 46–53% of the present level needed to move the exploitation rate towards that needed to ensure more sustainable fisheries (Eopt = 0.35) (Table 34).
Further analysis suggested that an increase of 4–6 % in the yield per recruit and of 25–33% in income per recruit would be obtained if the 40 mm cod-end mesh size was adopted instead of the 30 mm mesh size in use (Table 35) (IRMA–CNR, 1999).

Figure 71. Relative yield per recruit vs. exploitation rate. Calculations with L∞ = 30.5 mm and M/K = 0.27. Emax = 0.67; E0.1 = 0.66; E0.5 = 0.41 and Ec = 0.8 (from Levi et al., 1995)

Figure 72. Long-term projection, based on the Thompson and Bell model, of biomass per recruit (in grams), yield per recruit (in grams), yield in weight (in grams) and value per recruit (in Italian lire). X-axis coefficient with respect to the present level of fishing mortality (F) (from Levi et al., 1995)

Table 34. Percentage reduction in the exploitation rate (E = F/Z) assuming as reference point Eopt = 0.35 in the mid–late-1990s. E values for area A (on the Italian side of the mid-line in the Strait of Sicily) and for area B (on the North African side of the mid-line in the Strait of Sicily) are distinguished as EA and EB, respectively (from IRMA–CNR, 1999).

EA EB % Reduction in current level of E required to reach Eopt (0.35)
    A B

0.75

0.65 53 46

Table 35. Simulation of long-term variation in yield (in grams) per recruit (Y/R) and income (in Italian lire) per recruit (£/R) with a change in cod-end mesh size from 30 to 40 mm, according to the Thompson and Bell model. Values for area A (on the Italian side of the mid-line in the Strait of Sicily) and B (on the North African side of the mid-line in the Strait of Sicily) are distinguished (from IRMA–CNR, 1999).

Area F Y/R(g) "30" Y/R(g) "40" Δ % £/R "30" £/R "40" Δ %

A

B

1.8

1.4

2.1

2.1

2.3

2.2

5.9

3.6

20

23

27

29

33.3

24.8

Within the framework of the MedSudmed project, joint stock assessments for the P. longirostris were carried out using a common data-set from Italy, Tunisia and Italy (Knittweis et al., 2013). These assessments were performed using length cohort analysis (LCA) (Table 36). The extended survivor analysis (XSA) was also run to assess the state of the stock of P. longirostris (Ben Meriem et al., 2012).
The more recent assessment of the state of the stock in GSA 12, 13, 14, 15 and 16 used the commercial catches of the years 2007, 2008, 2009, 2010, 2011 and 2012, by LCA and yield per recruit analysis (Ben Meriem et al., 2013). Current mean F and exploitation pattern were assessed using the steady state LCA on length frequency distributions (LFD) from 2007 to 2012 as well as the average 2007-2012 catches, raised to the total landings. Analyses were performed separately on length frequency distributions of females and males and by keeping fleet segments separate. The F values by size and year for combined sex were obtained as ratio of the sum of the catch of females and males to the sum of mean number at sea of females and males respectively.
The VIT was also used to estimate biomass and to conduct yield per recruit analysis. The latter was done in order to analyze the stock production with increasing exploitation under equilibrium conditions. The biomass and yield per recruit values by sex were combined to obtain a single value for both the sexes by using an average, weighed by sex ratios (0.55 females and 0.45 males). The fishing mortality obtained showed high values of F on largest size although catches include also the juvenile fraction of the stock (Figure 73).

Figure 73. Evolution of fishing mortalities of P. longirostris in the Medsudmed area (from Ben Meriem et al., 2013).

Table 36. Input parameters of LCA used for Deep Water Rose Shrimp assessment in the Strait of Sicily (mean 2007-2013). Natural mortality (M), as scalar, was 1.05 and 1.20 in females and males respectively (from Ben Meriem et al, 2013).

Mean 2007-2012 Female
Input parameters L K t0

 

42.705

0.67

0.208

A

B

0.0029

2.4818

 

 

F term

2

 

 

Total Yeld

5.083.553.937

 

 

% Yeld by country

ITA coast

61.32

ITA Dist

19.95

TUN     MLT

18.56  0.17

Mean 2007-2012 Female
Input parameters L K t0

 

33.56

0.73

-0.13

A

B

0.0034

2.4096

 

 

F term

1.37

 

 

Total Yeld

2.289.187.940

 

 

% Yeld by country

ITA coast

68.43

ITA Dist

15.05

TUN     MLT

16.31  0.21


The results of the Yield and Spawing Stock Biomass per recruit (average values 2007-2012) are reported in Figure 74. Considering F0.1 as Target Reference Point (TRP), the entire stock appears "overexploited". Considering the mean pattern, to increase the value of this TRP is necessary to reduce the current value of F by about 13%. A reduction in the current value of F may not induce a substantial change in the long-term production but would result in a significant increase in SSB (Table 37)

Year Factor F Y/R B/R SSB/R

2007

0

1.25

1

0

1.08

0.86

0

2.18

2.09

4.78

2.31

2.46

3.88

1.54

1.68

2008

0

1.05

1

0

1.14

1.08

0

2.49

2.46

5.14

2.41

2.46

4.09

1.46

1.51

2009

0

1.91

1

0

1.34

1.48

0

2.50

2.50

5.04

1.58

2.32

4.05

2.42

1.43

2010

0

1.70

1

0

1.12

1.60

0

2.57

2.74

5.27

2.46

2.03

4.08

1.42

1.05

2011

0

1.54

1

0

1.97

1.77

0

2.42

2.64

5.10

2.50

1.91

4.09

1.59

1.05

2012

0

1.56

1

0

1

1.80

0

2.47

2.67

5.24

2.58

1.89

4.19

1.61

1.00

Average catch
2007-2012

0

1.87

1

0

1.18

1.36

0

2.33

2.42

4.97

2.50

2.18

4.01

1.63

1.34

 

Figure 74. Average Yield (Y/R) and Spawing Stock Biomass (SSB/Y) per recruit of deep water rose shrimp in the Strait of Sicily varying current fishing mortality (Fc) by a multiplicative factor according to LCA (from Ben Meriem et al., 2013).

Table 37. Estimation of yield (Y in g), biomass (B in g) and spawning stock biomass (SSB in g) per recruit (R), varying current fishing mortality by a multiplicative factor in VIT analysis. The factor corresponding to the target reference point F0.1 is marked in bold (from Ben Meriem et al., 2013).

In addition to LCA, an assessment based the Extended Survivors Analysis (XSA) was performed on commercial catch of Malta, Tunisia and Italy for the years 2007-2011 calibrated with data from campaigns to sea MEDITS relating to GSA GSA 15 and 16 (partial tuning). No data on discards were available. Annual length frequency distributions from both the commercial and landed campaigns MEDITS were converted into age structures using the package LFDA5. The vector of natural mortality (M) age was calculated by Gislason et al. (2008). Some of the outputs of XSA in terms of fishing mortality, spawning stock biomass and recruitment, are reported in Table 38.
It is worth noting that the tuning with the biomass estimation from trawl surveys, resulted in a decrease of the fishing mortalities with respect to the estimates obtained using only the catch values. Furthermore, considering F0.1= 1.18, the stock status passed from “in overfishing” (Fc=1.27 in 2011) to “sustainable fishing” (Fc= 0.72 in 2011).

Table 38. Fishing mortality (F), spawning stock biomass (SSB) and recruitment estimates by XSA for P. longirostris in 2007 to 2011 with shrinkage set at 0.5, 1 and 2. 0.5 and 2.0 corresponds to the lowest and highest influence of trawl surveys information respectively. The shrinkage corresponding to the reference value chosen is marked in bold (from Ben Meriem et al., 2013).

F0-2
Shrinkager 2007 2008 2009 2010 2011

0.5

1

2

0.99

1.16

1.10

0.94

0.99

0.91

1.43

1.13

0.95

1.57

0.96

0.79

1.27

0.82

0.72

SSB (tons)
Shrinkager 2007 2008 2009 2010 2011

0.5

1

2

10656

10046

10236

7957

8035

8373

11261

12714

13730

7620

9215

10253

9102

10395

11171

Recruitment (millions)
Shrinkager 2007 2008 2009 2010 2011

0.5

1

2

22825

23279

23846

35192

37303

38915

27359

28910

30094

30721

32298

33246

28166

29931

31105

 

Fisheries
P. longirostris is exploited almost exclusively by bottom trawlers that operate on the outer continental shelf and upper slope of the south-central Mediterranean throughout the year. According to different areas and depths catches includes a variety of species. On the shallower fishing grounds the main accompanying species are hake (Merluccius merluccius), horned and musky octopuses (Eledone spp.) (, broadtail short squid (Illex coindetii), lesser flying squid (Todaropsis eblanae), anglerfish (Lophius spp.), red mullet and striped red mullet (Mullus spp.), seabreams and pandoras (Pagellus spp.), John dory (Zeus faber) and rays (Raja spp.) (Fiorentino et al., 2008). On deeper grounds deep water rose shrimp is associated to Norway lobster (Nephrops norvegicus), giant red shrimp (Aristaeomorpha foliacea), hake (Merluccius merluccius), violet shrimp (Aristeus antennatus), scorpionfish (Helicolenus dactylopterus), greater forkbeard (Phicys blennioides), red Pandora (Pagellus bogaraveo), common Pandora (Pagellus erythrinus) and monkfish (Lophius spp.) (Knittweis et al., 2013).

Fishing zones and seasons
Deep-water rose shrimp is caught both over the shelf and the upper slope all year round, but landings peaks are observed from March to July (Levi et al., 1995). In Tunisian fisheries the landings peaks are observed from February to July (Figure 75) Traditionally, Sicilian off-shore trawlers concentrate on three main fishing grounds: from North-West to South-East, these are known as “Ponente” (West in the Figure), “Kelibia” and “South Lampedusa”. Each fishing ground is, in turn, further subdivided into distinct fishing banks (Levi et al., 1995) (Figure 76).

Figure 75. Variations of the avarage yields per month of P. longirostris in Tunisian fishery (average from 1995 to 2005) (Annuaires statistiques of DGPA 2005, Tunisia).

Figure 76. The main fishing areas of Parapenaeus longirostris for large (> 24m length overall, coloured lines) and small (12-24 m length overall, black lines) Sicilian trawlers in the south-central Mediterranean (modified from Levi et al., 1995).

Inside the Maltese FMZ, which includes a substantial part of GSA 15, the most important fishing grounds for P. longirostris were the deepest ones (J, K, L, M, N in Figure 77) (Camilleri et al., 2008).

Yield
In terms of biomass, the deep water rose shrimp was the most important crustacean species landed by Mediterranean trawl fisheries in 2000-2008, constituting 23% of total crustacean landings (FAO FishStat; GFCM capture production dataset) (Figure 78).

Figure 77. Trawlable areas inside the Maltese Fisheries Management Zone (FMZ) within 25 nm from Maltese Islands (A, B, C, D protected, trawling forbidden; E, F, G, H, I shelf /shallow water; J, K, L, M, N slope/deep water, the most relevant to shrimp fishery) (from Camilleri et al., 2008).

Since most of the deep-water rose shrimp catches are made by long-distance trawlers (fishing trips of 20–30 days), the values above have to be considered as a fraction of the overall production of the Sicilian trawler fleet. The estimated overall annual yield of the Mazara del Vallo offshore trawler fleet in the late-1980s to the early-1990s ranged between 2,360 and 5,180 tons (Levi et al., 1995). The deep water rose shrimp yield of all the Sicilian boats fishing in the Strait of Sicily (inshore and offshore fisheries) at the beginning of the new century varied between 6,665 in 2003 and 8,584 in 2005 (from IREPA data). The estimated overall annual yield of the Tunisian rose shrimp reached a maximum of 2.000 tons in 2006 (Figure 79) (Ben Meriem and Hadj Mbarek, 2009).

Figure 78. Capture production of Parapenaeus longirostris in the Mediterranean Sea from 1970 to 2008 (source: FAO/GFCM). The estimated yield of inshore trawlers fishing P. longirostris (1-2 day trips) in GSA 16 between April 1985 and March 1986 was 1,290 tons; the following year it amounted to 1,637 tons.

Figure 79. Yield of the Tunisian pink shrimp. (fish statistic of DGPA, Tunisia, 2012)

The analysis of the production by Tunisian regions show that the north provides essential national production of the Tunisian pink shrimp (Figure 80); with an annual average of about 85% of total production. The contribution to this yield by port is indicated in the following figure (Figure 81)
Statistics of shrimp catches in GSA 15 (Maltese trawlers), including red shrimp and deepwater rose shrimp, showed an oscillating trend from 1980 to 2005, with a first maximum in the mid-1980s (about 35 tons), followed by another of similar magnitude in 2003, separated by a minimum in 1993 (about 5 tons) (Figure 82). The very high yield of about 190 tons, in 2001, has been omitted from the graph.

Figure 80. Yield of shrimps (deep-water rose shrimp) by region in Tunisia. Figure 81. Contribution of the different ports in Tunisia to the total yield of the P. longirostris.


Figure 82. Yield of shrimps (deep-water rose shrimps and red shrimps) by the Maltese trawlers from 1980 to 2005 (drawn from data provided by Camilleri).

The most recent yield values used in stock assement within the MedSudMed Project is reported in Figure 83.


Figure 83. Yield of DPS from 2007 to 2011 in the Strait of Sicily, Central Mediterranean (GSA 12,13,14,15 and 16) (from Ben Meriem et al., 2012).

Fishing and discards
According to Levi et al. (1995), the length at 50% capture using a cod-end mesh size of 32 mm mesh size, estimated from the catch curve, was 16.1 mm CL (selection factor = 0.5). More recently, selectivity experiments for the same cod-end mesh size gave an L50% = 13.0 ±0.1 (mm) (selection range = 5.2 and SF = 0.42) (Ragonese and Bianchini, 2006).
The modal individual size in the catch and in the discarded fraction of P. longirostris taken by Sicilian trawlers is very variable according to the season and the depth ranges of the various fisheries (Table 39). The amount of discards is also variable, being higher in autumn–winter and from trawling catches between depths of 150 and 300 m (Anon., 2000).

Table 39. Annual modal length (carapace length, CL, in millimeters) of individual P. longirostris in the discarded fraction and in the landings of typical inshore (Porto Palo, southeastern Sicily) and distant (Mazara del Vallo, southwestern Sicily) Sicilian trawl fisheries (from Anon., 2000).

Fishery Modal Length (CL, mm)(0.35)
Discards Landings

Inshore

Distant

12

19

16 and 19

25-26

A Recent studies on the discarded fraction of trawl catches in GSA 16 during 2006 gave a length at 50% discard ranging between 14.6 and 17.0 mm CL (V. Gancitano, pers. comm.).

Gears
The Italian trawlers targeting deep-water rose shrimp in the Strait of Sicily use the “fondale” type of the trawl net called “Italian trawl net”. The Italian trawl net is characterized by a low vertical opening (up to 1.5 m), with overall dimensions depending on engine power (Table 40) (Fiorentino et al., 2003c).

Table 40. Main characteristics of the traditional Sicilian trawl nets used in the Strait of Sicily for a “reference” trawler equipped with a 375–450 kW (~ 500–600 HP) engine (from Fiorentino et al., 2003c).

Net Characteristics

Banco net

Fondale net

Length of codend
Length of extension piece
Lastridge rope
Circumference of codend
Circumference of extension piece

5 - 6 m
20 - 21 m
Absent
400-450 mesh * 40-36 mm
900-1000 mesh * 44-40 mm

5 - 6 m
23 - 25 m
Absent
500-600 mesh * 28-26 mm
400 mesh * 50-52 mm

The fleet targeting the pink shrimp in the north of Tunisia has increased in the beginning of the 90s but their number decreased in the late 90. A new entry of some industrial (frozen) trawlers is observed at the beginning of 2000s (Figure 84).


Figure 84. Number of trawlers targeting the pink shrimp in the north region of Tunisia (fishing statistic of DGPA, 2014 Tunisia).

Legislation and management
At present there are no formal management objectives for P. longirostris fisheries in the Strait of Sicily. As in other areas of the Mediterranean, the stock management is based on control of fishing capacity (number of fishing licences), fishing effort (days at sea, number of trawls), and technical measures (cod-end mesh size, area closures and size limits).
In order to limit the over-capacity of the fishing fleet, the number of Italian fishing licences has been fixed since the late1980s. Since 2000, in conformity with the European Common Fisheries Policy, a gradual decrease in fleet capacity has occurred. Furthermore, from 1987 to 2005, an annual 30–45-day fishery closure was enforced, although in different ways, in order to reduce fishing effort.
A medium-term management plan for 2008-2013 has been agreed for Italian trawlers targeting rose shrimp in the Strait of Sicily. Italian Management Fishery Plans (IFMP) is based on:

  • a reduction of 25% of the current fishing fleet capacity obtained in two steps. The first (12.5%) from 2008 to 2010, and the second (12.5%) from 2011 to 2013.

  • a trawling ban of 45 days per year between January and March.

Although included in the medium-term fisheries management plan, no measures of protection of nurseries are currently implemented.
According to Cacaud (2002), the Tunisian authorities can limit the number of boats fishing in a given area and they can impose fishery closures of up to three months, which can be renewed.
The new EC Regulation 1967, of 21st December 2006, fixed for the first time a minimum marketable size of P. longirostris, which is of 20 mm CL for the Italian and Maltese trawl fisheries.
In Tunisia, no regulations specifically targeting the rose shrimp fishery are currently in place. However, trawling is not permitted within 3 nautical miles of the coast and at less than 50m depth in GSAs 12-14. Moreover, in GSA 14 a closed season where trawling is prohibited from July-September is in place in order to protect recruits of a large number of species. Although minimum landing sizes exist for a number of crustacean species harvested by the Tunisian fleets, there is no minimum landing size for P. longirostris. The minimum legal mesh size used by benthic trawlers in Tunisian waters is 20mm.
The new EC Regulation 1967, of 21st December 2006, fixed 40 mm opening as the minimum mesh size for cod-ends of bottom trawls for EU fishing boats (Italian and Maltese trawlers). With effect from July 2008, mesh size has to conform to a square mesh size of 40 mm opening or a romboidal mesh size of 50 mm opening, although derogations were possible up to 2010.
Available information suggests that the new mesh size should improve the deepwater rose shrimp fisheries (Sobrino et al., 2005; Ragonese et al., 2006). A further improvement in the fishery might be obtained through the protection of P. longirostris nurseries (Fortibuoni et al., 2010). Similarly to hake, the shrimp nurseries are located in separate offshore areas on the outer shelf (100–200 m depth range) The fisheries in the Maltese FMZ in the Strait of Sicily, which extends up to 25 nautical miles from baselines around the Maltese islands, are specifically managed on the basis of the control of the fleet capacity.
The access of European Community vessels to the waters and resources in the Maltese FMZ is regulated as follows:

  1. fishing within the Maltese FMZ is limited to fishing vessels smaller than 12 metres overall length using other than towed gears, and

  2. the total fishing effort of those vessels, expressed in terms of the overall fishing capacity, must not exceed the average level observed in 2000–2001, which corresponds to 1,950 vessels with an overall engine power of 83,000 kW and an overall tonnage of 4,035 GT.

Trawlers not exceeding an overall length of 24 metres are authorized to fish in certain areas within the Maltese FMZ. The overall fishing capacity of the trawlers allowed to operate in the Maltese FMZ must not exceed the limit of 4,800 kW and the fishing capacity of any trawler authorized to operate at a depth of less than 200 m must not exceed 185 kW.
Trawlers fishing in the Maltese FMZ hold a special fishing permit in accordance with Article 7 of Regulation (EC) No 1627/94 and are included in a list containing their external marking and their corresponding Community fleet register number (CFR) to be provided to the Commission annually by the Member States concerned.

REFERENCES click to enlarge

A.A.V.V. (2008). Status of deep-sea red shrimps in the Central and Eastern Mediterranean Sea. Final Report. Project Ref. FISH/2004/03-32.

Abelló P., Valladares F.J., Castellón A. (1988). Analysis of the structure of decapod crustacean assemblages off Catalan coast (North-West Mediterranean). Mar. Biol., 98: 39-49.

Abellò P., Abella A., Adamidou A., Jukic-Peladic S., Maiorano P., Spedicato M.T. (2002). Geographical patterns in abundance and population structure of Nephrops norvegicus and Parapenaeus longirostris (Crustacea: Decapoda) along the European Mediterranean coasts. Sci. Mar., 66 (2): 125-141.

Alverson D.L., Freeberg S.S., Muraski S.S., Pope J.G. (1994). A global assessment of fisheries by-catch and discards. FAO Fish. Tech. Pap., 339: 233 pp.

Andreoli, M.G., Campanella, N., Cannizzaro, L., Garofalo, G., Giusto, G.B., Jereb, P., Levi, D., Norrito, G., Ragonese, S., Rizzo, P., Sinacori, G. (1995) Sampling statistics of southern Sicily trawl fisheries (MINIPESTAT): data report. NTR–ITPP Special Publication 4 (vol. II).

Anon. (2000). Analysis of trawls’ discard operation in the central and eastern Mediterranean Sea. Commission of the European Communities. Directorate-General for Fisheries XIV. Contract No 97/0044. Final Report.

Ansell A.D., Robb L. (1977). The spiny lobster Palinurus elephas in Scottish water. Mar. Biol., 43: 63-70.

Ardizzone G.D., Gravina M.F., Belluscio A., Schintu P. (1990). Depth–size distribution pattern of Parapenaeus longirostris (Lucas, 1846) (Decapoda) in the central Mediterranean Sea. J. Crustac. Biol., 10(1): 139-147.

Audouin J. (1965). Répartition bathymétrique des crevettes sur les côtes algériennes entre les îles Zaffarines et les îles Habibats. Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 18: 171-174

Azouz A. (1971). Etude des biocénoses, benthiques et de la faune ichtyologique des fonds chalutables de la Tunisie; régions nord et sud-est. Thèse Sci. nat, Univ. Caen: 243 pp.

Azouz A. (1972). Les crustacés comestibles (crevettes et langoustines) des mers tunisiennes. Bull. Int. natn. scient. tech. Océanogr. Pêche. Salammbô, 2 (3) : 275 - 301.

Azouz A. (1981). Réflexions en vue de l’amélioration de la production de la crevette royale dans le golfe de Gabès. Bull. Off. Nat. Pêche. Tunisie, 5 (2) : 101 – 113.

Babbucci M., Buccoli S., Cau A., Cannas R., Goñi R., Díaz D., Marcato S., Zane L., Patarnello T. (2010). Population structure, demographic history, and selective processes: contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). Mol. Phyl. Evol., 56: 1040-1050.

Bailey N. (1984). Some Aspects of Reproduction in Nephrops. Shellfish Committee Document CM 1984/K:33. ICES: 16 pp.

Bauer R.T. (1991). Sperm transfer and storage structures in penaeoid shrimp: a functional and phylogenetic perspective. In: R.T. Bauer and J.W. Martin, Crustacean sexual biology, Columbia University Press: 183-207.

Becer Özvarol Z.A., Tasly A., Ozvarol Y. (2006). Some biological properties of the shrimp Metapenaeus monoceros (Fabricius, 1798) in the Gulf of Anatalya in the Mediterranean (Turkey). J.World. Aquac. Soc.: 15 pp.

Belcari P., Viva C., Mori M., De Ranieri S. (2003). Fishery and biology of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda) in the Northern Tyrrhenian Sea (Western Mediterranean). J. Northw. Atl. Fish. Sci., 31: 195-204.

Bell M.C., Redant F., Tuck I. (2006). "Nephrops Species". In Bruce F. Phillips. Lobsters: Biology, Management, Aquaculture and Fisheries. Wiley-Blackwell. 412–461.

Bello G., Pipitone C. (2002). Predation on cephalopods by the giant red shrimp Aristaeomorpha foliacea. J. Mar. Biol. Ass. U.K., 82(2): 213-218.

Ben Abdallah O. (2005). Contribution à l’étude biologique et dynamique de la crevette mouchetée Metapenaeus monoceros (Fabricius, 1798) dans le golfe de Gabès (Tunisie). Mastère. INAT. 68 p.

Ben Abdallah-Ben Hadj Hamida O. (2012). Etude biologique et dynamique de la crevette mouchetée Metapenaeus monoceros (Fabricius, 1798) exploitée dans le golfe de Gabès (Tunisie). Thèse de doctorat. INAT. 281 p.

Ben Hadj Hamida-Ben Abdallah O., Ben Hadj Hamida N., Jarboui O., Fiorentino F., Missaoui H. (2009). Reproductive biology of the speckled shrimp Metapenaeus monoceros (Fabricius, 1798) (Decapoda: Penaeidae) in the gulf of Gabes (Southern Tunisia, Eastern Mediterranean). Cahiers de Biologie Marine, vol. 50, no3, pp. 231-240.

Ben Hadj Hamida-Ben Abdallah O., Ben Hadj Hamida N., Jarboui O., Missaoui H. (2010). Age and growth of the speckled shrimp Metapenaeus monoceros (Fabricius, 1798) in the Gulf of Gabes (Southern Tunisia, Central Mediterranean). Cahiers de Biologie Marine, vol. 51, no3, pp. 265-274.

Ben Khemis L. (1984). Pêche à la crevette dans le golfe de Gabès. Rapp. Doc. Inst. natn. scient. tech. Océanogr. Pêche. Salammbô, 2: 3 - 30.

Ben Meriem S. (1992). Eléments en vue d’un aménagement des pêcheries du golfe de Gabès, Tunisie. Bull. Inst. natn. scient. tech. Océanogr. Pêches. Salammbô, 19 : 66 - 84.

Ben Meriem S. (1993). Taille de première maturité sexuelle et période de ponte de Penaeus kerathurus du golfe de Gabès (Decapoda, Penaeoidea). Crustaceana, 65(1): 82 - 96.

Ben Meriem S. (1994). Aristaeomorpha foliacea and Aristeus antennatus in Tunisian waters. Proc. Int. Workshop on life cycles and fisheries of red shrimps, N.T.R.-I.T.P.P. Sec. Publ., 3: 50.

Ben Meriem S. (1995). Caractères biométriques de Penaeus kerathurus du golfe de Gabès (Decapoda, Penaeoidea). Crustaceana, 68(5): 583 - 596.

Ben Meriem S. (1998). Mortalités (F et M) et analyse des rendements par recrue de Penaeus kerathurus (Forskål) du golfe de Gabès, Tunisie. Cah. Option Mediterr., 35, Dynamique des populations marines, ISSN : 1022 – 1379 : 25 - 34.

Ben Meriem S., Fiorentino F., Arneri E., Ceriola L., Gancitano V., Jarboui O., Micallef R., Mifsud R. (2013). Stock assessment of pink shrimp (Parapenaeus longirostris) in GSAs 12-16. GFCM stock assessment form submitted at the GFCM demersal stock assessment meeting in Bar, Montenegro, 03-04 February 2014.

Ben Mariem S. (2004). First approach to the growth of Penaeus kerathurus (Decapoda, Penaeidae) in the Gulf of Gabès, Tunisia. Crustaceana, 77: 277-297

Ben Meriem S., Gharbi H. (1988). Analyse préliminaire des résultats de chalutage du “HANNOUN” dans le golfe de Gabès (du 2 au 22 août 1988). Rap. Doc. Inst. natn. scient. tech. Océanogr. Pêche Salammbô, 3: 1 – 34.

Ben Meriem S., Fehri-Bedoui R., Gharbi H. (2001). Size at maturity and ovigerous period of the pink shrimp Parapenaeus longirostris (Lucas, 1846) in Tunisia. Crustaceana, 74(1): 39-48.

Ben Mustapha A. (1967). Observations biologiques sur Penaeus kerathurus Forskål et étude biométrique. Annales. Inst. natn. scient. tech. Océanogr. Pêche. Salammbô, (XIII).
Bevacqua D., Melià P., Follesa M.C., De Leo G.A., Gatto M., Cau A. (2010). Body growth and mortality of the spiny lobster Palinurus elephas within and outside a small marine protected area. Fish. Res., 106: 543-549.

Bianchini M.L., Di Stefano L., Ragonese S. (1998). Daylight vs. night variations in the red shrimp catches of the Strait of Sicily. Rapp. Comm. Int. Mer Médit, 35(2): 374-375.

Bianchini M.L. (1999). The deep-water red shrimp Aristaeomorpha foliacea of the Sicilian Channel: biology and exploitation. University of Washington Ph.D. dissertation: 482+ 17p.

Bianchini M.L., Ragonese S. (2002). Influence of the fishing ground on the estimates of growth parameters in the deep-water red shrimp (Aristaeomorpha foliacea) of the Strait of Sicily. Biol. Mar. Medit., 9(1): 732-735.

Bianchini M.L., Ragonese S., Levi D. (2003). Management hypotheses to improve yield-per-recruit and economic returns in the red shrimp (Aristaeomorpha foliacea) fishery of Southern Sicily (Mediterranean Sea). J. Northw. Atl. Fish. Sci., 31: 233-243.

Branch, T.A., Kirkwood, G.P., Nicholson, S.A., Lawlor, B., Zara, S.J. (2000). Yield version 1.0, MRAG Ltd, London, U.K.
Brian A. (1931). La biologia del fondo a "scampi" nel Mare Ligure. V. Aristaeomorpha, Aristeus ed altri macruri natanti. Boll. Mus. Zool. Anat. Comp. R. Univ. Genova, 2 ( 45) : 1-6.

Brutto, S. L., Maggio, T., Arculeo, M. (2013). Isolation By Distance (IBD) signals in the deep-water rose shrimp Parapenaeus longirostris (Lucas, 1846) (Decapoda, Panaeidae) in the Mediterranean Sea. Mar. Envir. Res., 90: 1-8.

Cacaud P. (2002) Etude comparative sur la réglementation en matière de pêche maritime dans les pays de la Méditerranée occidentale participant au projet Copemed. Projet FAO COPEMED. FAO, Rome : 34pp.

Camilleri M., Drago A., Fiorentino F., Garofalo G., Gristina M., Bahri T., Massa F. (2008) Spatial pattern of fisheries demersal resources, environmental factors and fishery activities in GSA 15. Pilot Study. MedSudMed GCP/RER/010/ITA/MSM-TD-13. MedSudMed Technical Documents, 13:105pp.

Campillo A. (1982). Premières données sur la pèche et la biologie de la langouste de Corse, Palinurus elephas Fabricius. Quad. Lab. Tecn. Pesca, 3(2-5): 115-39.

Campillo A., Amadei J. (1978). Premières données biologiques sur la langouste de Corse, Palinurus elephas Fabricius. Rev. Trav. Inst. Pêches Marit., 42: 347-373.

Campillo A., P.Y. Dremiere, B. Liorzou, Bigot J.L. (1991). Observations sur deux crustacés profonds du Golfe du Lion, Aristeus antennatus (R.) et Nephrops norvegicus (L.). Rep Sixth Techn. Consultation Gen. Fish. Coun. Mediterranean, FAO Fish. Rep., 447: 298-313

Can M.F., Aktas M. (2005). A preliminary study on population structure and abundance of Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Natantia) in the deep water of the Northeastern Mediterranean. Crustaceana, 78 (8): 941-946.

Cannizzaro L., Vitale S., Arculeo M., De Stefano G., Lumare L., Milazzo A., Salvo G. (2011). Stock assessement and management by restocking of Melicertus kerathurus (Forskål, 1775) in the shallow coastal.

Cannizzaro L., Alagna A., Andreoli M.G., Gianformaggio N. (1991) Relazione taglia–peso per alcuni pesci del Canale di Sicilia. NTR–ITPP 39:33pp.

Carpenter K.E., Niem V.H. (eds) (1988). FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 2. Cephalopods, crustaceans, holothurians and sharks. Rome, FAO.: 687-1396.

Carpentieri P., Colloca F., Ardizzone G. (2005) Day–night variations in the demersal nekton assemblages on the Mediterranean shelf-break. Estuar. Coast. Shelf Sci., 63:577-588.

Cartes J.E. (1995). Diets of, trophic resources exploited by, bathyal Penaeoidan shrimps from the Western Mediterranean. Mar. Freshwater Res., 46: 889-896.

Cartes J.E., Company J.B., Maynou F. (1994). Deep-water decapod crustacean communities in the Northwestern Mediterranean: influence of submarine canyons and season. Mar. Biol., 120: 221-230.

Castriota L., Campagnuolo S., Andaloro F. (2001). Shrimp trawl fishery by-catch in the Straits of Sicily (central Mediterranean Sea). Scientific Council Research Documents of the Northwest Atlantic Fisheries Organization, Serial No. N4501, No 01/113.

Cau A., Deiana A.M., Mura M. (1987). Ecological observations on Aristaeomorpha foliacea (Risso, 1987) (Decapoda, Penaeidae) in the mit-Western Mediterranean Sea. Invest. Pesq., 51 (1): 456.

Cau A., Carbonell A., Follesa M.C., Mannini A., Orsi Relini L., Politou C.Y., Ragonese S., Rinelli P. (2002). MEDITS-based information on the deep water red shrimps Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae). Sci. Mar., 66 (S2): 103-124.

Ceccaldi H.J., Latrouite D. (2000). The French fisheries for the European spiny lobster Palinurus elephas. In: B.F. Phillips & J. Kittaka (Eds) Spiny Lobster Fisheries and Culture (2nd edn). Blackwell Science, Oxford, : 200–209.

Chaouachi B., Ben Hassine O.K. (1998) Données sur la pêche des crevettes profondes Parapenaeus longirostris (Lucas, 1846) en Tunisie. Cah. Options Medit., 35: 201–213.

CNR–IAMC (2006). Programma Nazionale Italiano per la raccolta di dati alieutici. Modulo “Altri campionamenti biologici”- Risorse demersali - Unità Gestionale 16 (Stretto di Sicilia): rapporto finale, CNR–IAMC, Mazara del Vallo (TP), Italy: 46pp.
CNR–IAMC (2007). Programma Nazionale Italiano per la raccolta di dati alieutici. Modulo H “Campionamento biologico delle catture” (CAMP–BIOL; Risorse demersali) - GSA 16 (Stretto di Sicilia): rapporto finale, CNR–IAMC, Mazara del Vallo (TP), Italy: 186 pp.

CNR-IAMC (2009). Programma Nazionale Italiano per la raccolta di dati alieutici 2008. Modulo I. Altri campionamenti biologici risorse demersali e piccoli pelagici - GSA 16 (Stretto di Sicilia): relazione finale, IAMC-CNR, Mazara del Vallo (TP), Italia: 79 pp.

Colloca F., M. T. Spedicato, E. Massutí, Garofalo G., G. Tserpes, P. Sartor, A. Mannini, A. Ligas, G. Mastrantonio, B. Reale, C. Musumeci, I. Rossetti, M. Sartini, M. Sbrana, F. Grati, G. Scarcella, M. Iglesias, M.P. Tugores, F. Ordines, L. Gil de Sola, G. Lembo, I. Bitteto, M.T. Facchinii, A. Martiradonna, W. Zupa, R. Carlucci, M.C. Follesa, P. Carbonara, A. Mastradonio, Fiorentino F., Gristina M., Knittweis L., Mifsud R., Pace M.L., C. Piccinetti, C. Manfredi, G. Fabi, P. Polidori, L. Bolognini, R. De Marco, F. Domenichetti, R. Gramolini, V. Valavanis, E. Lefkaditou, K. Kapiris, A. Anastasopoulou and N. Nikolioudakis, 2013 Mapping of nursery and spawning grounds of demersal fish. Mediterranean Sensitive Habitats (MEDISEH) Final Report, DG MARE Specific Contract SI2.600741, Heraklion (Greece).

Company J.B., Maiorano P., Tselepides A., Politou C.-Y., Plaiti W., Rotllant M., Sardà F. (2004). Deep-sea decapod crustaceans in the western and central Mediterranean Sea: preliminary aspects of species distribution, biomass and population structure. Sci. Mar., 68 (3): 73-86.

Conides A., Glamuzina B., Dulcic J., Kapiris K., Jug-Dujakovic J., Papaconstantinou C. (2008). Study of the reproduction of the karamote shrimp Penaeus (Melicertus) kerathurus in Amvrakikos Gulf, western Greece. Acta Adriat., 49(2): 97 – 106.

Conides A., Glamuzina B., Jug-Dujacovic J., Papaconstantinou C., Kapiris K. (2006). Age, growth, and mortality of the karamote shrimp, Penaeus (Melicertus) kerathurus (Forskål 1775) in the east Ionian Sea (Western Greece). Crustaceana, 79(1): 33-52.

Cristo M., Cartes J.E. (1998). A comparative study of the feeding ecology of Nephrops norvegicus (L.), (Decapoda: Nephropidae) in the bathyal Mediterranean and the adjacent Atlantic. Sci. Mar., 62 (1): 81-90.

Crnković D. (1965). Ispitivanje ekologije i mogućnosti racionalnog unaprijeđenja eksploatacije raka Nephrops norvegicus (L) u kanalskom području sjeveroistočnog Jadrana. Disertacija, PMF Sveučilišta u Zagrebu.

Cuccu D. (1999). Biologia ed Ecologia dell’ Aragosta Rossa (Palinurus elephas, Fabricius, 1787). Proposte Gestionali per il Recupero dello Stock. Tesi di dottorato in biochimica comparata degli ecosistemi, Ciclo XIV, Università di Sassari, 111pp.

Cuccu D., Follesa M.C., Secci E., Cau A. (1999). Preliminary data on the movement, growth, mortality and tag retention of the spiny lobster (Palinurus elephas). European crustacean conference.

Cunningham J.T. (1891). On the development of Palinurus vulgaris, the Rock Lobster or sea crayfish. J. Mar. Biol. Ass. U.K., 2: 141-150.

Cushing D.H. (1968). Fisheries biology. A study in population dynamics. University of Wisconsin Press, Madison, 200 pp.

De Ranieri S., Mori M., Sbrana M. (1998). Preliminary study on the reproductive biology of Parapenaeus longirostris (Lucas) off the northern Tyrrhenian Sea. Biol. Mar. Medit., 5(1): 710-712.

Díaz D., Marí M., Abelló P., Demestre M. (2001). Settlement and Juvenile Habitat of the European Spiny Lobster Palinurus elephas (Crustaceana: Decapoda: Palinuridae) in the Western Mediterranean Sea. Sci. Mar., 65(4): 347–356.

Dimech M., Kaiser M.J., Ragonese S., Schembri P.J. (2012). Ecosystem effects of fishing on the continental slope in the Central Mediterranean Sea. Mar. Ecol. Prog. Ser., 449: 41-54.

D’Onghia G., Maiorano P., Matarrese A., Tursi A. (1998). Distribution, biology and population dynamics of Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Natania, Aristaeidae) in the North-Western Ionian Sea (Mediterranean Sea). Crustaceana 71 (5): 518-544.

D’Onghia G., Mastrototaro F., Matarrese A., Politou C., Mytilineou C. (2003). Biodiversity of the upper slope demersal community in the eastern Mediterranean: preliminary comparison between two areas with and without trawl fishing. J. Northw. Atlant. Fish. Sci., 31: 263.

d’Udekem d’Acoz C. (1999). Inventaire et distribution des crustace´s de´capodes de l’Atlantique nord-oriental, de la Me´diterrane´e et des eaux douces continentales adjacentes au nord de 25°N. Patrimoines Naturels (MNHN/SPN) 40: 1–383.

D’Onghia G., Matarrese A., Maiorano P., Perri F. (1998) Valutazione di Parapenaeus longirostris (Lucas, 1846) (Crustacea, Decapoda) nel Mar Ionio. Biol. Mar. Medit. 5(2):273-283.

Dos Santos A. (1998). On the occurrence of larvae of Parapenaeus longirostris off the Portuguese Coast. J. Nat. Hist., 32: 1519-1523.

Eggleston D.B., Lipcius R.N. (1992). Shelter selection by spiny lobster under variable predation risk, social conditions, and shelter size. Ecol., 73: 992-1011.

Falciai L., Minervini R. (1996). Guide des homards, crabes, langoustes, crevettes et autres. Crustacés Décapodes d’Europe. Delachaux et Niestlé SA, Lausanne-Paris. 1-287 pp.

FAO FishStat Plus 2012. Fisheries and aquaculture software. FishStat Plus - Universal software for fishery statistical time series. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 28 November 2013. Available at the URL: http://www.fao.org/fishery/statistics/software/fishstat/en.

Fiorentini L., Cosimi G., Sala A., Palumbo V. (1994). Caratteristiche e prestazioni delle attrezzature a strascico impiegate per la valutazione delle risorse demersali in Italia. Biol. Mar. Medit., 1 (2): 115-134.

Fiorentino F., Bono G., Garofalo G., Gristina G., Ragonese M., Gancitano S., Giusto G.B., Rizzo P., Sinacori G. (2003). A further contribution on stock’s status and fisheries of main demersal resources in the Strait of Sicily. EN/TN/FF-GB-GG-MR-SR-SG-GBG-PR-GS/4/0303/DRAFT.

Fiorentino F., Garofalo G., Gristina G., Gancitano S., Norrito G. (2004). Some relevant information on the spatial distribution of demersal resources, benthic biocoenoses and fishing pressure in the Strait of Sicily. In: Report of the MedSudMed Expert Consultation on Spatial Distribution of Demersal Resources in the Straits of Sicily and the Influence of Environmental Factors and Fishery Characteristics. GCP/RER/010/ITA/MSM-TD-02. MedSudMed Technical Documents, 2: 50-66.

Fiorentino F., Mazzola S., Garofalo G., Patti B., Gristina M., Bonanno A., Massi D., Basitone G., Cuttitta A., Giusto G.B., Gancitano S., Sinacori G., Rizzo P., Levi D., Ragonese S. (2005). Lo stato delle risorse demersali e dei piccoli pelagici e le prospettive di pesca “sostenibile” nello Stretto di Sicilia. Convenzione con Assessorato Regione Siciliana Cooperazione, Commercio, Artigianato e Pesca, Mazara del Vallo, Italy. ID/TN/FF-SM-GG-BP-MG-AB-DM-GB-AC-GBG-SG-GS-PR-DL-SR/8/0305/rel. 1:136pp.

Fischer W., Bauchot M.L., Schneider M. Eds. (1987). Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Volume I. Végétaux et Invertébrés. Publication préparée par la FAO, résultat d’un accord entre la FAO et la Commission des Communautés Européennes (Projet GCP/INT/422/EEC) financée conjointement par ces deux organisations. Rome, FAO, Vo1.1: 267-268.

Follesa M.C., Cuccu D., Damele F., Sabatini A., Cau A. (2003). Valutazioni sull’accrescimento di Palinurus elephas (Fabr., 1787) tramite marcatura e ricattura nei mari sardi. Biol. Mar. Medit., 10 (2): 253-256.

Follesa M.C., Cuccu D., Cannas R., Cau A. (2007). On the growth of the European spiny lobster, Palinurus elephas from Sardinian waters (Central Western Mediterranean sea). N.Z. J. Mar. Freshw. Res., 41: 377-383.

Follesa M.C., Cuccu D., Damele F., Sabatini A., Cau A. (2007). Emigration and retention of Palinurus elephas (Fabricius, 1787) in a region of the Central Western Mediterranean MPA. Sci. Mar., 71 (2): 279-285.

Follesa M.C., Cuccu D., Cannas R., Sabatini A., Deiana A.M., Cau A. (2009). Movement patterns of the spiny lobster Palinurus elephas (Fabricius, 1787) from a central western Mediterranean protected area. Sci. Mar., 73(3): 499-506.

Froglia C., Gramitto M.E. (1988). An estimate of growth and mortality parameters for Norway lobster (Nephrops norvegicus) in the Central Adriatic Sea. FAO Fish. Rep., 394: 189-203.

Gaamour A., Rjeibi O., Bdioui M., Missaoui H. (2005). Les pêcheries de la langouste rouge Palinurus elephas de la région Nord de la Tunisie : engin de pêche, éléments biologiques et gestion. Rapport final du projet de recherche sur la langouste rouge dans le cadre des activités de recherche du projet COPEMED. Publié dans le site du Projet COPEMED.

Gaamour A., Rjeibi O., Ben Salem S., Jaziri S. (2009). Analysis of Palinurus elephas fisheries of the North coasts of Tunisia. Proceedings of TJASSST’10, edited by: A. Ghorbel, A. Ben Salem, S. Bouzayene, pp. 112-115.

Galhardo A.M., Serafim P., Castro M. (2006). Aspects of the biology and fishery of the European spiny lobster (Palinurus elephas) from the southwest coast of Portugal. J. Crust. Biol., 26: 601–609.

Galil B., Froglia C., Nöel P. (2002). CIESM Atlas of Exotic Species in the Mediterranean. Vol. 2. Crustaceans: decapods and stomatops. [F. Briand, Ed.]. 192 pages. CIESM Publishers, Monaco.

Gamulin T. (1955). Contribution à la connaissance de l´écologie de la langouste (Palinurus vulgaris Latreille) dans l'Adriatique. Act. Adriat., VII, 3-17.

Gamulin T. (1955). Contribution à la connaissance de l’écologie de la langouste (Palinurus vulgaris Latreille). Arch. Zool. Exp. Gén., 67: 32-39.

Gancitano V., Cusumano, S., Giusto, G. B, Garofalo, G., Ingrande, G., Sabatella, E., Ragonese, S., Fiorentino, F. (2008). Valutazione dello stato di sfruttamento del gambero rosso Aristaeomorpha foliacea (Risso, 1827) (Crustacea; Decapode) nello Stretto di Sicilia. Biol. Mar. Medit., 15(1): 326-327.

Gancitano V., Garofalo G., Gristina M., Ragonese S., Rizzo P., Gancitano S., Cusumano S., Ingrande G., Badalucco C., Fiorentino F. (2011). Potential Yield and Current Exploitation of Deep Water Pink Shrimp (Parapenaeus longirostris), Hake (Merluccius merluccius) and Giant Red Shrimp (Aristaeomorpha foliacea) in the Strait of Sicily. In: Brugnoli E., Cavarretta G., Mazzola S., Trincardi F., Ravaioli M., Santoleri R. (eds) Marine research at CNR - Fishery and Sea Rresources. - ISSN 2239-5172 Volume DTA/06-2011, Roma, November 2011, pp. 1-18.

Garofalo G., Fortibuoni T., Gristina M., Sinopoli M., Fiorentino F. (2011). Persistence and co-occurrence of demersal nurseries in the Strait of Sicily (central Mediterranean): Implications for fishery management. J. Sea Res., 66: 29-38.

Garofalo G., Giusto, G. B., Cusumano, S., Ingrande, G., Sinacori, G., Gristina, M., Fiorentino, F. (2007). Sulla cattura per unità di sforzo della pesca a gamberi rossi sui fondi batiali del mediterraneo orientale. Biol. Mar. Medit., 14(2): 250-251.

Gashout S., Haddoud D., Zgozi S. (1992) Distribution–abundance of commercial shrimp in Libyan waters, data from 1970 surveys. Arab Fish. J., Vol. 13.

Gayanilo Jr. F.C., Soriano M., Pauly D. (1988). A draft guide to the COMPLEAT ELEFAN. ICLARM Software Project 2: 65 p. and diskettes

Gayanilo Jr. F.C., Sparre P., Pauly D. (1994). The FAO-ICLARM Stock Assessment Tools (FiSAT) User's guide. FAO Computerized Information Series (Fisheries) No. 8 Rome, FAO, 124 p. and 3 diskettes.

Gayanilo Jr. F.C., Sparre P., Pauly D. (2005). Food And Agriculture Organization Of The United Nations – Fisat II (version 1.2.2) Rome, 2005.

George J.P. (1977). Prospection des lieux de pêche de la crevette Penaeus kerathurus et introduction d'une nouvelle technique de pêche pour ce crustacé en Tunisie (1973-1975). Bull. Inst. natn. scient. tech. Océanogr. Pêches Salammbô, 4 (2-4): 263 - 306.

Gharbi A., Ben Meriem S. (1996). Résultats de chalutages expérimentaux (mai-juin 1996) dans le golfe de Gabès. Bulletin de l’Institut National des Sciences et Technologies de la Mer, 23: 80-96.

Ghidalia W., Bourgeois F. (1961). Influence de la temperature et de l’eclairement sur la distribution des crevettes des moyennes et grandes profondeurs. Stud. Rev. Gen. Fish. Count. Medit., FAO: 16: 53 pp.

Giacalone V.M., D’anna G., Pipitone C., Badalamenti F. (2006). Movements and residence time of spiny lobsters Palinurus elephas released in a marine protected area: an investigation by ultrasonic telemetry. J. Mar. Biol. Ass. U.K., 86: 1101-1106.

Gislason H., Daan N., Rice J.C., Pope J.G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish Fish., 11: 149–158.

Goñi R., Hilborn R., Diaz D., Mallol S., Adlerstein S. (2010). Net contribution of spillover from a marine reserve to fishery catches. Mar. Ecol. Prog. S., 400: 233-243.

Goñi R., Latrouite D. (2005). Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911). Cah. Biol. Mar., 46(2): 127-142.

Goñi R., Quetglas A., Reñones O. (2001a). Diet of the spiny lobster Palinurus elephas (Decapoda: Palinuridea) from the Columbretes Islands Marine Reserve (north-western Mediterranean). J. Mar. Biol. Ass. U.K., 81: 347-348.

Goñi R., Quetglas A., Renones O. (2006). Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Progr. Ser., 306: 207-219.

Goñi R., Quetglas A., Reñones O., Mas, J. (2003c). Threats to the sustainability of Palinurus elephas fisheries. The Lobster Newsletter, 16, 2–5.

Goñi R., Quetglas A., Reñones R. (2003d). Biología, ecología, pesquerías y efecto reserva de la langosta roja, Palinurus elephas Fabricius 1787 de Columbretes y Baleares (Mediterráneo Occidental). Report 03-01, 1-107. 2003. IEO-COB/LANGOSTA.

Goñi R., Quetlas A., Reñones O. (2003a). Size at maturity, fecundity and reproductive potential of a protected population of the spiny lobster Palinurus elephas (Fabricius, 1787) from the Western Mediterranean. Mar. Biol., 143: 583-592.

Goñi R., Quetlas A., Reñones O. (2003b). Differential catchability of male and female European spiny lobster Palinurus elephas (Fabricius, 1787) in traps and terammelnets. Fish. Res., 65: 295-307.

Goñi R., Reñones O., Quetglas A. (2001b). Dynamics of a protected western mediterranean population of the european spiny lobster Palinurus elephas (Fabricius, 1787) assessed by trap survey. Mar. Freshw. Res., 52: 1577–1587.

Goñi, R. (2006). Proyecto langosta. Biología, ecología, pesquerías y efecto reserva de la langosta roja Palinurus elephas (Fabricius 1787) en el Mediterráneo Español. Revista electrónica del IEO 4, 21-26. 2006.

Groffiths R.C., Robles R., Coppola S.R., Camiñas J.A. (2007). Is there a future for artisanal fisheries in the western Mediterranean? FAO, Rome. 106pp.

Gristina M., Fiorentino F., Garofalo G., Ragonese S., Gagliano M. (2002). Gli effetti della protezione sull'aragosta comune (Palinurus elephas Fabricius, 1787) nella riserva marina delle "Isole Egadi". Report Rapporto preliminare, ID/W.PR./MG-FF-GG-SR-MG/2/07/02/DRAFT, 1-23.. Mazara del Vallo (TP), Italy, Instituto di Ricerche sulle Risorse Marine e l'Ambiente - Consiglio Nazionale delle Ricerche.

Gristina M., Fiorentino F., Garofalo G., Gagliano M., Morizzo G., Cusumano S. (2005). Effetti della protezione sull'aragosta comune (Palinurus elephas Fabricius, 1787) nella Riserva Marina delle Isole Egadi. Biol. Mar. Medit., 12: 404-409.

Gristina M., Fiorentino F., Garofalo G., Sinopoli M. (2008). L’aragosta comune Palinurus elephas (Fabricius, 1878), nell’Area Marina Protetta di Capo Gallo – Isola Delle Femmine. Processi di reclutamento ed impatto della pesca. Pesca e gestione delle aree marine protette, workshop Porto Cesareo, 30 - 31 ottobre 2008.

Gristina M., Sinopoli M., Fiorentino F., Garofalo G.,·Badalamenti F. (2011). Shelter selection of the spiny lobster Palinurus elephas under different levels of Octopus vulgaris predation threat. Mar. Biol., 158: 1331–1337.

Groeneveld J.C., Goni R., Latrouite D. (2006). "Palinurus species". In Bruce F. Phillips. Lobsters: Biology, Management, Aquaculture and Fisheries. John Wiley & Sons. pp. 385–411. ISBN978-1-4051-2657-1.

Guijarro B., Valls M., Massutí E. (2010). SAC GFCM - Sub-Committee on Stock Assessment (SCSA). 27 September 2010.

Guillen J., Maynou F., Floros C., Sampson D., Conides A., Kapiris K. (2012). A bio-economic evaluation of the potential for establishing a commercial fishery on two newly developed stocks: The Ionian red shrimp fishery. Scientia Marina, 76 (3). doi:10.3989/scimar.03434.07I.

Hammond R.D., Naylor E. (1977). Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar. Biol., 39: 253-260.

Hassan H. (1983). Distribution of penaeid larvae in the coastal waters of Pakistan. Ph.D. thesis, University of Karachi, Pakistan. pp. 288.

Heldt H. (1938). La reproduction chez les Crustacés décapodes de la famille des Pénéides. Inst. Océanogr., 18: 1-206.

Heldt H., Heldt J.H. (1954). Les crustacés comestibles des mers tunisiennes et leur pêche. Annales Sta. Océanogr. Salammbô, 9: 3 – 16.

Heldt J. (1955). Contribution a l’etude e la biologie des crevettes peneides Aristaeomorpha foliacea (Risso) et Aristeus antennatus (Risso). Bull. Soc. Des Sc. Tunisie, VIII (1-2): 1-29.

Heldt J.H. (1932). Sur quelques différences sexuelles (Coloration, Taille, Rostre) chez deux crevettes tunisiennes : Panaeus caramote Risso et Parapenaeus longirostris Lucas. Bull. Sta. Océanogr. Salammbô, (27): 1 - 25.

Heldt J.H. (1938). La reproduction chez les Crustacés Décapodes de la famille des Pénéides. Ann. Inst. Océanogr. Paris, 28: 1 – 206.

Heldt J.H. (1954). Contribution à l’étude de la biologie des Pénéides. Bull. Sta. Océanogr. Salammbô, 47: 5 - 27.

Hepper B.T. (1967). Observation on a crawfish (Palinurus vulgaris Latr.) tagging experiment off Cornwall in 1966. ICES CM. Shelfish and Benthos Committee, 13: 1-4

Hepper B.T. (1970). Observation on the growth of crawfish, Palinurus vulgaris Latr. Off the coast of cornwall. ICES CM. Shelfish and Benthos Committee, 9: 1-10.

Holthuis L.B. (1980). Shrimps and prawns of the world. FAO. Fish. Synop. 125 (1), 271 p.

Holthuis L.B. (1987). Invertébrés marins : Les crevettes. In : Fiches FAO d’identification des espèces pour les besoins de la pêche. Zone 37. Révision. W. Fisher M.L. Bauchot M. Schneider (eds), FAO. Publ. Vol. 1, Rome, pp : 189-292.

Holthuis L.B. (1991). FAO Species Catalogue, Marine Lobsters of the World – FAO Fisheries Synopsis N° 125, Vol 13. Rome, FAO: 115-122.

Hunter E. (1999). Biology of the european spiny lobster, Palinurus elephas (Fabricius, 1787) (Decapoda, Palinuridea). Crustaceana, 72(6): 545-567.

Hunter E., Shackley S.E., Bennett D.B. (1996). Recent studies on the crawfish Palinurus elephas in South Wales and Cornwall. J. Mar. Biol. Ass. U.K., 76: 963-983.

IMBC, UMBSM, and IRPEM. (1994). Nephrops norvegicus stock variability and assessment in relation to fishing pressure and environmental factors. Final report to EC, contract XIV-1/MED/91/003.

IRMA–CNR (1999). Valutazione delle risorse demersali nello Stretto di Sicilia (Mar Mediterraneo) nell’ambito del piano quadriennale 1996–99: rapporto finale – vol. 1–2. Gruppo Nazionale Valutazione Risorse Demersali (GRUND), Unità Operativa n° 11, IRMA–CNR, Mazara del Vallo (TP), Italy: 97pp.

Jarboui O. (2009). Available information on closed season in the MedSudMed and CopeMed II area Tunisian case study. In: Report of the Sub-regional Working Group on demersal shared stocks in the MedSudMed and CopeMed II area Mazara del Vallo (Italy), 16-17 September 2010. Presented to the 9th MedSudMed Coordination Committee. 24-25 March 2011, Capo Granitola-Mazara del Vallo, Italy.FAO-MedSudMed: CC9/Info06. 46pp.

Jaziri H., Ben Meriem S. (2011) Changement spatio-bathymétrique de la taille de la crevette, Penaeus kerathurus (Forskål, 1775) par sexe et localisation en Tunisie. 13 eme Journée des Sciences Marine Tunisie et deuxième rencontre franco-tunisienne d’Ichtyologie 26-29 Novembre 2011. Communication par poster. Mahdia, Tunisia, unpublished.

Jimenez S., Cano R., Bayle J., Sanchez-Lizaso J.L. (1996). Las praderas de Posidonia oceanica (L.) Delile como zona de proteccion de juveniles de especies de interés comercial. Tomo Extraordinario, 125 Aniversario de la Real Sociedad Española de Historia Natural: 375-378.

Kapiris K. (2012). Feeding Habits of Both Deep-Water Red Shrimps, Aristaeomorpha foliacea and Aristeus antennatus (Decapoda, Aristeidae) in the Ionian Sea (E. Mediterranean). Food Quality, Kostas

Kapiris (Ed.), ISBN: 978-953-51-0560-2, InTech.

Karani I., Kitsos M.S., Chartosia N., Koukouras A. (2005). Diet Composition of the Penaeid Shrimp, Melicertus Kerathurus (Forskål, 1775) (Decapoda, Penaeidae) in the Aegean Sea. Crustaceana, 78 (4): 385-396.

Karlovac O. (1965). Contribution à la connaissance de la biologie de la langouste commune (Palinurus elephas Fabr.) Note préliminaire). Rapports et Procès-Verbaux des Réunions du CIESMM. XVIII: 181-184.

Kirkwood G.P., Aukland R., Zara S.J. (2001). Length Frequency Distribution Analysis (LFDA), version 5.0. MRAG Ltd, London, U.K.

Knittweis L., Dimech M. (2009). Assessment of nursery and spawning areas of commercially important species in GSA 15. Presentation given at the 11th session of the GFCM Sub-Committee on Stock Assessment (SCSA) held on the 30/11/2009 – 03/12/2009 in Malaga, Spain.

Knittweis L., Dimech M. (2011). Malta’s Fisheries Management Plan 2011-2015; Annex VII – Proposed Fishing Protected Area in International Waters; Recommendations based on the spatial distribution of commercially important species in GSA 15.

Knittweis L., Arneri E., Ben Meriem S., Dimech M., Fiorentino F., Gancitano V., Jarboui O., Mbarek K.B., Ceriola L. (2013). Stock status and potential yield of deep water rose shrimp (Parapenaeus longirostris, Lucas 1846) in the south-central Mediterranean Sea. MedSudMed Technical Documents. No. 28. GCP/RER/010/ITA/MSM-TD-28, Rome, 2013: 15 pp.

Kosmas K., Maria T.L. (2012) Reproductive biology of the Melicertus kerathurus (Decapoda: Penaeidae) in Thermaikos Gulf (N. Aegean Sea) : 1-15.

Lamboeuf M., Ben Abdallah A., Zgozi S., Natati A., Mer A., Abdubari A. (1995). Libyan marine resource assessment. Trawl survey results 1993–1994. FI:DP/LIB/88/009 – FI:GCP/LIB/021/IsDB, FAO, Tripoli–Rome. Technical Briefing Notes, 26: 83pp.

Latrouite D., Noel P. (1997). Pêche de la langouste rouge Palinurus elephas en France, éléments pour fixer une taille marchande. ICES CM 1997/BB: 13.

Levi D., Andreoli M.G., Giusto R.M. (1995). First assessment of the rose shrimp, Parapenaeus longirostris (Lucas 1846), in the central Mediterranean. Fish. Res., 21: 375-393.

Levi D., Vacchi M. (1988). Macroscopic scale for simple and rapid determination of sexual maturity in Aristaeomorpha foliacea (Risso, 1826) (Decapoda, Penaeidae). J. Crust. Biol,. 8 (4): 532-538.

Ligas A., Abella A., Colloca F. (2011). SAC GFCM - Sub-Committee on Stock Assessment (SCSA). 17 October 2011.

Lipcius R.N., Herrnkind W.F. (1987). Control and coordination of reproduction and molting in the spiny lobster Palinurus argus. Mar. Bio., 96: 207-214.

Lleonart J., Salat J. (1997). VIT: software for fishery analysis. User's manual. FAO Computerized Information Series (Fisheries). No. 11. Rome, FAO: 105pp.

Loo L.O., Baden S.P., Ulmestrand M. (1993). Suspension feeding in adult Nephrops norvegicus (L.) and Homarus gammarus (L.) (Decapoda). Neth. J. Sea Res., 31 (3): 291-297.

Maiorano P., Sion L., Carlucci R., Capezzuto F., Giove A., Costantino G., Panza M., D’Onghia G., Tursi A. (2010). The demersal faunal assemblage of the north-western Ionian Sea (central Mediterranean): current knowledge and perspectives. Chemistry and Ecology, 26 (Suppl.): 219–240.

Marano G., Ungaro N., Marzano M.C., Marsan R. (1998). Le Risorse Demersali dell'Adriatico pugliese: analisi di una serie storica ('85-'95) relativa ai dati di cattura e demografia degli stock. Biol. Mar. Medit., 5 (2): 52-67.

Marcias S., Sacco F., Cau A., Cannas R. (2010). Microsatellite markers for population genetic studies of the giant red shrimp Aristaeomorpha foliacea (Crustacea, Decapoda). Rapp. Comm. Int. Mer Medit., 39.

Marin J. (1985). Etude de la croissance des Crustaces à partir des données de marquages-recaptures. Application à la langouste rouge de Corse, Palinurus elephas Fabricius. Journal du Conseil International pur l'Exploration de la Mer 26, 1-17.

Marin J. (1985). La lanoguste rouge: biologie et exploitation. Pêche maritime, 64: 105-113.

Marin J. (1987). Exploitation, biologie et dynamique du stock de langouste rouge de Corse, Palinurus elephas, Fabricius 1787. Thesis, University College, Galway. 331 pp.

Matarrese A., D’Onghia G., Tursi A., Maiorano P. (1997). Vulnerabilità e resilienza in Aristaeomorpha foliacea (Risso, 1827) e Aristeus antennatus (Risso, 1861) (Crostacei, Decapodi) nel Mar Ionio. S. It. E. Atto, 18: 535-538.

Maurin C. (1962). Etude des fonds chalutables de la Méditerranée occidentale (écologie et pêche): Résultats des compagnes des navires océanographiques «Président-Théodore-Tissier» 1957 à 1960 et « Thalassa » 1960 et 1961.26, ISTPM. 218 pp.

Maurin C. (1965). Repartition des erevettes profondes au large des cotes de Sardaigne et de Corse. Rapp. Comm. int. Mer Medit., 18 (2): 175-178

Maurin C., Carries C. (1968). Note préliminaire sur l’alimentation des Crevettes profondes. Rapp. Comm. Int. Mer Médit., 19(2): 155-156.

Maynou F., Cartes J.E. (2011). Effects of trawling on fish and invertebrates from deep-sea coral facies of Isidella elongata in the western Mediterranean. Journal of the Marine Biological Association U.K., 92 (7): 1501-1507.

Maynou F., Sardà F. (1997). Nephrops norvegicus population and morphometrical characteristics in relation to substrate heterogeneity. Fish. Res., 30: 139 –149.

McKoy J.L., Esterman D.B. (1981). Growth of rock lobsters (Jasus edwardsii) in the Gisborne region. N. Z. J. Mar. Freshw. Res., 15: 121–136.
MedSudMed (2008). Bibliographic synthesis of information on some target species in the MedSudMed Project area (central Mediterranean). MedSudMed Technical Documents 15, Rome: 69 pp.

Mercer J.P. (1973). Studies on spiny lobsters (Crustacea: Decapoda: Palinuridae) of the west coast of Ireland, with particular reference to Palinurus elephas Fabricius 1787. Ph.D. Thesis, University College Galway, Ireland, 331 pp.

Minervini R. (1996). Guide des homards, crabes, langoustes, crevettes et autres crustacés décapodes d’Europe. 287 p. Delachaux et Niestlé.

Missaoui H. (2004). The effects of environmental factors on the distribution of crustaceans along the Tunisian coast. MedSudMed Technical Documents 2.

Missaoui H., Zaouali J. (1995). Apparition de nouveaux Crustacés dans les pêches crevettières du golfe de Gabès, Tunisie. Marine Life, 5 (2): 27 - 34.

Morratoupolu Kassimati E. (1973). Distribution and fishing of the lobster Palinurus vulgaris and Homarus vulgaris in Greek seas. Rapp. Comm. Int. Mer. Médit., 22(4): 69-70.

Mosbah S., Ghorbel M., Jarboui O., Lenfant P., Verdoit-Jarraya M. (2012). Application des methodes d’analyses des donnees pour la gestion des ressources naturelles. Statistique Fonctionelle et Operationelle. Recueil des resumes, Annee 2011-2012: 3-9.

Mytilineou C., Castro M., Gancho P., Fourtouni A. (1998) Growth studies on Norway lobster, Nephrops norvegicus (L.), in different areas of the Mediterranean Sea and the adjacent Atlantic. Sci. Mar., 62 (Supl. 1): 43-60.

Mytilineou C., Castro M., Gancho P., Fourtouni A. (1998). Growth studies on Norway lobster, Nephrops norvegicus (L.) in different areas of the Mediterranean Sea and the adjacent Atlantic. Sci. Mar., 62 (1): 43-60.

Nouar A. (1985). Contribution a l’étude de la crevette pénéide Parapenaeus longirostris (Lucas, 1846), dans la région d’Alger: écologie, biologie, exploitation. PhD thesis, Univ. Houari Boumedienne, 136 pp.

Needle C.L. (2003) Survey-based assessments with SURBA. Working Document to the ICES Working Group on Methods of Fish Stock Assessment, Copenhagen, 29 January to 5 February 2003.

Newman G.G., Pollock D.E. (1974). Growth of the rock lobster Jasus lalandii and its relationship to benthos. Mar. Biol., 52: 347–356.

Orsi Relini L., Relini G. (1985). The red shrimp fishery in the Ligrian Sea: mismanagement or not? FAO Fish. Rep., 336: 99-106.

Orsi Relini L., Relini G. (1989). Reproduction of Nephrops norvegicus L. in isothermal mediterranean waters. In Reproduction, Genetics and Distributions of Marine Organisms. Ed. J.S. Ryland, P.A. Tyler, Pub. Olsen e Olsen, Denmark: 153-160.

Orsi Relini L., Zamboni A., Fiorentino F., Massi D. (1998). Reproductive patterns in Norway lobster Nephrops norvegicus (L.), (Crustacea Decapoda Nephropidae) of different Mediterranean areas. Sci. Mar., 62 (1): 25-41.

Palero F., Abelló P., Macpherson E., Matthee C.M., Pascual M. (2011). Genetic Diversity Levels in Fishery-Exploited Spiny Lobsters of the Genus Palinurus (Decapoda: Achelata).

Palero F., Guerao G., Abelló P. (2008). Morphology of the final stagephyllosoma larva of Scyllarus pygmaeus (Crustacea: Decapoda: Scyllaridae), identified by DNA analysis. J. Plank. Res., 30: 483–488.

Palero F., Guerao G., Clark P.F., Abelló P. (2011). Scyllarus arctus (Crustacea: Decapoda: Scyllaridae) final stage phyllosoma identified by DNA analysis, with morphological description. Mar. Biol. Ass. U. K., 91(2): 485-492.

Palero, F., Abello, P., Macpherson, E., Gristina, M., Pascual, M. (2008). Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. Molec. Phyl. Evol., 48: 708-717.

Papaconstantinou C., Kapiris K. (2003). The biology of giant red shrimp (Aristaeomorpha foliacea) at an unexploited fishing ground in the Grek Ionian Sea. Fish. Res., 62: 37-51.

Pauly D. (1980). On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J. Cons. CIEM, 39 (3):175-192.

Pauly, D. (1987) A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates. In: D. Pauly and G.R. Morgan (eds.) Length-Based methods in fisheries researches.

Proc. Int. Conference on the theory and application of length-based methods for stock assessment, 11-16 February 1985, Mazara del Vallo, Sicily, Italy, ICLARM Conference Proceedings 13: 7-34.

Pellerito R., Arculeo M., Bonhomme F. (2009) Recent expansion of Northeast Atlantic and Mediterranean populations of Melicertus (Penaeus) kerathurus (Crustacea:Decapoda). Fish. Sci.,75:1089–1095. DOI 10.1007/s12562-009-0131-z.

Perdichizzi A., Pirrera L., Micale V., Muglia U., Rinelli P. (2012). A histological study of ovarian development in the giant red shrimp Aristaeomorpha foliacea (Crustacea: Decapoda: Aristeidae) from the Southern Tyrrhenian Sea (Western Mediterranean). Scient. World J. doi: 10.1100/2012/289608.

Peres J.M. (1967). The Mediterranean benthos. Oceanography and Marine Biology: an Annual Review, 5: 449–533.

Pérez Farfante I., Kensley B. (1997). Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Mém. Mus. Nat. Hist. Nat., 175: 1-233.

Pipitone C., Badalamenti F., Cuttitta C., D’Anna G., Gristina M. (1994). Preliminary results on the diet of Aristaeomorpha foliacea in the Sicilian Strait (Central Mediterranean Sea). Proc. Int. Workshop on life cycles and fisheries of red shrimps. N.T.R.-I.T.P.P. Spec. Publ., 3: 47-48.

Politou C.Y., Kapiris K., Maiorano P., Capezzuto F., Dokos J. (2004). Deep-Sea Mediterranean biology, the case of A. foliacea (Risso, 1827) (Crustacea, Decapoda, Aristeidae). Sci. Mar., 68 (3): 117-127.

Pollock D.E. (1979). Predator-prey relationship between the rock lobster Jasus lalandii and the mussel Aulocomya ater at Robben Island on the Cape west coast of Africa. Mar. Biol., 52: 347–356.

Pollock D.E. (1982). The fishery and population dynamics of West Coast rock lobster related to the environment in the Lambert’s Bay and Port Nolloth areas. Investigations of the Sea Fisheries Institute of South Africa, 124: 57 pp.

Pollock D.E. (1991). Spiny lobster at Tristan da Cunha, South Atlantic: inter-island variations in growth and population structure. S. Afr. J. Mar. Sci., 10: 1–12.

Pollock D.E., De Beyers C.J. (1981). Environment, distribution and growth rates of West Coast rock-lobster Jasus lalandii (H. Milne Edwards). Trans. Royal Soc. S. Afr., 44: 379–400.

Quetglas A., Gaamour A., Reñones O., Missaoui H., Zarrouk T., Elabed A., Goñi R. (2004). Spiny lobster (Palinurus elephas, Fabricius 1787) fisheries in the western Mediterranean: A comparison of Spanish and Tunisian fisheries. Boll. Soc. Hist. Nat. Baleares, 47: 63-80.

Ragonese S. (1995). Geographical distribution of Aristaeomorpha foliacea (Crustacea-Aristeidae) in the Sicilian Channel (Mediterranean Sea). ICES J. Mar. Sci. Symp., 199: 183-188.

Ragonese S., Abella A., Fiorentino F., Spedicato M.T. (2006). Methods for estimating the instantaneous rate of natural mortality (M) in fisheries science with particular reference to the Mediterranean. Biol. Mar. Medit., 13(3): 78-151.

Ragonese S., Andreoli M.G., Bono G., Giusto G.B., Rizzo P., Sinacori G. (2004). Overview of the available biological information on demersal resources of the Strait of Sicily. GCP/RER/010/ITA/MSM-TD-02. MedSudMed Technical Documents 2: 67-74.

Ragonese S., Bertolino F., Bianchini M.L. (1997). Biometric relationships of the red shrimp Aristaeomorpha foliacea (Risso 1827), in the Strait of Sicily (Mediterranean Sea). Sci. Mar., 61(3): 367-377.

Ragonese S., Bianchini M.L. (1995). Size at sexual maturity in red shrimp females Aristaeomorpha foliacea, from the Sicilian Channel (Mediterranean Sea). Crustaceana, 68 (1): 73-82.

Ragonese S., Bianchini M.L. (2006). Trawl selectivity trials on the deep-water rose shrimp (Parapenaeus longirostris) in Sicilian waters. Hydrobiologia, 557: 113–119.

Ragonese S., Giusto G.B. (1998). Deep water occurrence of Penaeus kerathurus (Forskål, 1775) (Decapoda, Penaeidae) in the Strait of Sicily (central Mediterranean Sea). Crustaceana, 71: 353-357.

Ragonese S., Vitale S., Dimech M., De Santi A. (2012). Growth discontinuity in males of the deep-water giant red shrimp Aristaeomorpha foliacea in the Mediterranean Sea. Mar. Ecol., 33: 386–392.

Ragonese S., Zagra M., Di Stefano L., Bianchini M.L. (2001). Effect of codend mesh size on the performance of the deep-water bottom trawl used in the red shrimp fishery in the Strait of Sicily (Mediterranean Sea). Hydrobiologia, 449: 279-291.

Rainer S.F. (1992). Diet of prawns from the continental slope of North-Western Australia. Bull. Mar. Sci., 50(2): 258-274.

Rao P.V. (1972). Seasonal abundance of larvae and post-larvae of the Commercially important penaeid prawns in the inshore Waters of Cochin. Ind. J. Fish., 19 (1-2): 86-96.

Rawag A.A., Haddoud D.A., Zgozi S.W. (2004). Commercial demersal marine species of Libya. GCP/RER/010/ITA/MSM-TD-02. MedSudMed Technical Document, 2: 75-81.

Relini G., Bertrand J., Zamboni A. (eds.) (1999). Synthesis of the knowledge on bottom fishery resources in Central Mediterranean (Italy and Corsica). Biol. Mar. Medit., 6 (1).

Relini M., Torchia G. (1998). Unexpected displacement of a spiny lobster in the Ligurian sea. Biol. Mar. Medit., 5: 641-643.

Rikhter V.A., Efanov V.N. (1976). On one of the approaches to estimation of natural mortality of fish populations. ICNAF Res.Doc., 79/VI/8 : 12pp.

Rjeibi O. (2012). Biologie et dynamique des populations de la langouste rouge Palinurus elephas pêchée sur les côtes tunisiennes. Thèse de doctorat de l’Institut National Agronomique de Tunisie spécialité Halieutique, Tunisie. 281 pp.

Rjeibi O., Gaamour A., Missaoui H. (2010). Kinetics of ooegenesis and spawning strategy of the red spiny lobster Palinurus elephas. J. Crust. Biol., 30: 401-412.

Rjeibi O., Gaamour A., Missaoui H. (2011). Etude de la croissance de la langouste rouge, Palinurus elephas dans les eaux tunisiennes. Bull. Inst. Natn. Scien. Tech. Mer de Salammbô, vol 38.

Rjeibi O., Gaamour A., Rjeibi O., Missaoui H. (2010). Kinetics of ooegenesis and spawning strategy of the red spiny lobster Palinurus elephas. J. Crust. Biol., 30: 401-412.

SAMED (2002). Stock Assessment in the Mediterranean. European Commission, Directorate-General XIV, Project 99/047, Final Report.

Sardà F., Lleonart J., Cartes J.E. (1998). An analysis of the population dynamics of Nephrops norvegicus (L.) in the Mediterranean Sea. SCI. MAR., 62 (Supl. 1): 135-143.

Scordella G., Lumare F. (2001). Stato delle popolazioni di Penaeus kerathurus: valutazione dello sforzo di pesca e della produttivita nelle aree di Termoli (CB), Lesina (FG) e Frigole (LE). In: Proceedings of the Workshop Stato della pesca e dinamica di popolazione del gambero mediterraneo Penaeus kerathurus in alcune aree della costa adriatica, Lecce, 16 Marzo. pp. 20–27.

Secci E., Cuccu D., Follesa M.C., Cau A. (1999). Fishery and tagging of Palinurus elephas in Sardinian seas. In: Von-Vaupel Klein, J.C., Schram F.R. (eds.) Fourth International Crustacean Congress Procedings of the Fourth International Crustacean Congress, Amsterdam. Brill, Leiden, 665-672. Amsterdam. Brill, Leiden., A.A. Balkema/Rotterdam/Brookfield. The Biodiversity Crisis and Crustacea. 20-7-1998.

Secci E., Cuccu D., Follesa M.C., Sabatini A., Cau A. (1999). Restocking of Palinurus elephas (Fabr, 1787) in a Western Central Sardinian area. Biol. Mar. Medit., 6: 614-616.

Serpil Y., Becer Ozvarol Z.A., Ozvarol Y. (2009). Fisheries and Shrimp Economy, Some Biological Properties of the Shrimp Metapenaeus monoceros (Fabricus, 1798) in the Gulf of Antalya (Turkey). J. Anim. Vet. Adv., 8: 2530-2536.

Sheehy M.R.J. (1990a). Widespread occurrence of fluorescent morphological lipofuscin in the crustacean brain. J. Crust. Biol., 10: 613-622.

Sheehy M.R.J. (1990b). Potential of morphological lipofuscin age-pigment as an index of crustacean age. Mar. Biol. Berlin, 107: 439-442.

Sheehy M.R.J., Cameron E., Marsden G., Mcgrath J. (1995). Age structure of female giant tiger prawns Penaeus monodon as indicated by neuronal lipofuscin concentration. Mar. Ecol. Prog. Ser., 117: 59-63.

Sobrino I., Silva C., Sbrana M., Kapiris K. ( 2005). A review of the biology and fisheries of the deep water rose shrimp, Parapenaeus longirostris, in European Atlantic and Mediterranean waters (Decapoda, Dendrobranchiata, Penaeidae). Crustaceana, 78: 1153–1184.

Spedicato M.T., Lembo G., Silecchia T., Carbonara P. (1996). Distribuzione e biologia di Parapenaeus longirostris nel Tirreno centro-meridionale. Biol. Mar. Medit., 3(1): 579-581.

STECF (2013). In: Cardinale M., Charef A., Osio C. (eds.) Assessment of Mediterranean Sea stocks part 1 (STECF-13-22) Luxembourg: Publications Office of the European Union, ISBN 978-92-79-34645-3, doi:10.2788/36268, 400 pp.

STECF 11-14 (2011). Assessment of Mediterranean Sea stocks – part 2. Report of the Scientific, Technical and Economic Committee for Fisheries. JRC scientific and policy reports, edited by Cardinale M., Raetz J.-J., Charef A., EUR 25053 EN. 611 pp.

STECF 12-19 (2012). Assessment of Mediterranean Sea stocks – part 1. Report of the Scientific, Technical and Economic Committee for Fisheries. JRC scientific and policy reports, edited by Cardinale M., Osio G.C., Charef A., pending EUR number. 502 pp.

Symonds D.J. (1972). The fishery for the Norway lobster, Nephrops norvegicus (L.), off the north-east coast of England. Fishery Investigations, Series II, 27(3): 35pp..

Tabka-Belkhodja S. (2004). Contribution à l’étude écobiologique de la crevette blanche Metapenaeus monoceros (Fabricius) dans le golfe de Gabès. Mastère. INAT. 68 p.

Taylor C.C. (1959). Temperature and growth. J. Conseil. Explor. Mer., 25 (1): 93-101.

Tidu C., Sardá R., Pinna M., Cannas A., Meloni M.F., Lecca E., Savarino R. (2004). Morphometric relationships of the European spiny lobster Palinurus elephas from the northwestern Sardinia. Fish. Res., 69: 371-379.

Tsagarakis K., Palialexis A., andVassilopoulou V. (2013). Mediterranean fishery discards: reviewof the existing knowledge. – ICES Journal of Marine Science, 71 (5): 1219-1234. doi: 10.1093/icesjms/fst074.

Tuck I.D., Chapman C.J., Atkinson R.J.A. (1997). Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland-I: Growth and density. ICES J. Mar. Sci., 54: 125-135.

Turkmen G, Yilmazyerli H. (2006). Some biological aspects of Melicertus kerathurus (Forskål, 1775) (Decapoda, Penaeidae) Inhabiting Izmir Bay (Aegean Sea) Turkey. Crustaceana, 79(5): 583-591.

Turkmen G., Ozden O., Parug S., Akalin S. (2007). Some Reproductive Aspects of Melicertus kerathurus (Forskål, 1775) (Decapoda, Penaeidae) Inhabiting the Gulluk Bay (Aegean Sea) of Turkey. J. App. Biol. Sci., 1(1): 69-74, 2007.

Tursi A., Matarrese A., D’Onghia G., Maiorano P., Mastrotataro F., Balanini M., Panza M. (1999). Parapenaeus longirostris. In: Relini G., Bertrand J.A., Zamboni A. (eds.) Synthesis of knowledge on bottom fishery resources in central Mediterranean (Italy and Corsica). Biol. Mar. Medit., 6(1): 541-553.

Ungaro N., Marano G., Marsan R., Pastorelli A.M. (1999). On the reproduction of Nephrops norvegicus (L.) in the Southern Adriatic Sea (Mediterranean Sea): sex ratio, maturity length and potential fecundity. Crustacean Issues, 12: 553-561.

Véron G. (1995). Organisation et classification du règne animal. Nathan : 128 pp.

Vila Y., Medina A., Megina C., Ramos F., Sobrino I. (2000). Quantification of the agepigment lipofuscin in brains of known-age, pond-reared prawns Penaeus japonicus (Crustacea, Decapoda). Journ. exp. Zool., 286: 120-130.

Vitale S., Cannizzaro L., Lumare F., Arculeo M., Mazzola S. (2013). Restocking trial of Melicertus kerathurus (Decapoda, Penaeidae) in the shallow coastal waters of southwestern Sicily (Mediterranean Sea). Rapp. Comm. Int. Mar Medit. 2013.

Vitale S., Cannizzaro L., Bono G., Beltrano A.M., Milazzo A., Norrito G. (2006). Catch composition of Decapoda crustaceans from trawl fishery catches in the Central Mediterranean Sea. J. Coast. Res., Special Issue, 39 (1): 1798-1800.

Vitale S., Cannizzaro L., Lumare L., Mazzola S. (2010). Population parameters of Melicertus kerathurus (Decapoda, Penaeidae) in Southwest Sicilian shallow waters (Mediterranean Sea) using Length-Frequency Analysis. Crustaceana, 83 (8): 997-1007. DOI:10.1163/001121610X510615.

Wadie W.F., Abdel Razek F.A. (1985). The effect of damming on the shrimp population in the south-eastern part of the Mediterranean Sea. Fish. Res., 3: 323–335.

Wilson D.P. (1949). Notes from the Plymouth aquarium, an apparent example of learning in Palinurus vulgaris Latreille. J. Mar. Biol. Ass. U. K., 28: 347.

Zimmer-Faust R.K., Tyre J.E. Case J.F. (1985). Chemical attraction causing aggregation in the spiny lobster, Panulirus interruptus (Randall), and its probable ecological significance. Biol. Bull., 169: 106-l 18.

Zitari-Chatti R., Chatti N., Elouaer A., Said K. (2008). Genetic variation and population structure of the camarote prawn Penaeus kerathurus (Forskål) from the eastern and western Mediterranean coasts in Tunisia. Aquac. Res., 39: 70–76.

Zouari M., (1984). Etude descriptive de la pêche à la crevette au filet tramail fil 40.000 dans la région de Gabès. Rapp. Doc. Inst. natn. scient. tech. Océanogr. Pêche Salammbô, 2: 31 - 45.

    ::HOME    ::THE PROJECT    ::ACTIVITIES    ::PUBLICATIONS    ::EVENTS    ::Country Fishery Information   

FAO MEDSUDMED Project  FAO-FIRF Room C351-C353 -Viale delle Terme di Caracalla 00153 Rome -Italy-
::: tel  +39 06 570 54492 ::: fax +39 06 570 55188 -

©FAO-MedSudMed,

© FAO MedSudMed project - Web site. [online]. Rome. Updated. [Cited ].