
MedSudMed Technical Documents No.5 

 90

Acoustic identification of small-pelagic fish species: target strength analysis and school 
descriptor classification 

 
M. S. Hannachi∗, L. Ben Abdallah and O. Marrakchi 

 
 
Abstract 
 
The acoustic identification of small-pelagic fish species is part of the INSTM ongoing project 
on the assessment of small-pelagic-fish species in Tunisian waters. The aim of this project is 
to develop a method for determining the species of fish detected by the EK–500 echosounder 
directly from their acoustic signature, instead of indirectly by experimental trawling. 
 
Two principal subjects have been studied: target-strength analysis; and school descriptors as 
an indicator of fish species. Target-strength analysis empirically determines the constant c for 
each species in Foote’s equation, which is then used for biomass estimation. Encouraging 
results have been obtained for the sardine (Sardina pilchardus), and work is continuing on 
other species. Fish-school descriptors (bathymetric, morphological etc.) are extracted from 
echograms and used for training artificial neural networks, which are then used as species 
classifiers. Two types of neural networks have been tested and three species have been 
successfully identified using probabilistic neural networks: the sardine (Sardina pilchardus), 
the anchovy (Engraulis encrasicolus), and the horse mackerel (Trachurus trachurus). Results 
indicated that probabilistic neural networks are better for the acoustic identification of fish 
schools than feed-forward neural networks. 
 
 
1. Introduction  
 
Sonar techniques, especially echosounders, have been used since the beginning of the 
twentieth century for the detection of fish at sea by professional fishermen and by fishery 
oceanographers. It has been noted since the 1950s that the acoustic signature of fish can carry 
information on their species. In particular, the physical backscattering properties of small 
pelagic fish, such as their target strength or spectral response, are related to their species 
(Scalabrin, 1996; Simmonds et al., 1996; Zakharia et al., 1996). Moreover, small pelagic fish, 
known for their aggregation into schools, especially during the daytime, can be identified 
from the acoustic properties of these schools (Coetzee, 2000; Haralabous and Georgakarakos, 
1996; Scalabrin, 1996). The technique of echo-integration, first developed by Dragesund and 
Ossien in 1965, makes possible an estimate of the biomass represented by schools of small 
pelagic fish (Masse, 1996). Since 1998, annual acoustic and experimental fishing surveys 
have been carried out during the summer for the study of the small-pelagic-fish stocks along 
the Tunisian coast. Small-pelagic fish-stock estimates can be improved by a better knowledge 
of the species composition of the biomass through acoustic identification of the detected 
schools. While many current acoustic identification studies are interested in wide-band and 
multi-beam echosounding technology, we chose to use a narrow-band echosounder. This is of 
special interest because most commercial trawlers in Tunisia use narrow-band echosounders 
operating at 38 kHz, and we hope that these results can eventually be used by professional 
fishermen for more selective fishing. Two main themes are explored by our research group: 
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target strength (TS) analysis; and the use of school descriptors for species identification. Our 
objective with TS analysis is to determine the value of the specific constant c in Foote’s 
equation (Maclennan and Simmonds, 1995) for the species of interest: cLTS t += )log(20   
 
The parameter c is then used in echointegration formulae for biomass assessment. Data from 
three surveys were used. Currently, we have obtained results for sardine (Sardina pilchardus), 
since this species was the predominant species in most trawls, but work is progressing on 
other species. School descriptors as a function of species has been discussed by several 
authors (Cotzee, 2000; Haralabous and Georgakarakos, 1996; Scalabrin, 1996). Neural 
networks have been proposed as an alternative tool to parametric statistical methods for the 
identification of small pelagic species (Haralabous and Georgakarakos, 1996; Simmonds et 
al., 1996; Zakharia et al., 1996). Data from three acoustic surveys were used for the extraction 
of school decriptors. The data from 120 schools of sardine (Sardina pilchardus), anchovy 
(Engraulis encrasicolus) and horse mackerel (Trachurus trachurus) were used to train two 
types of neural networks, and data from 137 schools were used to test these networks.  
 
 
2. Methods and data collection 
 
 
2.1 General methodology  
 
A detailed methodology for acoustic identification based on in situ data can be found in 
Scalabrin (1996). This is the approach that we used and it can be summarized in the following 
four steps: 
 

• Acoustic survey at sea and digital recording of data from the echosounder  
• Establishing experimental information by fish trawls 
• Selection of the fish schools for which the species is known 
• Choice and application of pattern recognition and classification methods 

 
 
2.2 Data collection at sea 
 
The data used in this study were collected by the R.V. "Hannibal" during the hydroacoustic 
surveys of the INSTM along the Tunisian coast, between July 2000 and August 2002. During 
each survey, the prospected areas were covered by a network of parallel transects adapted to 
the topography (MacLennan and Simmonds, 1995). Prospecting and trawling were both 
carried out during the daytime, while schools were closer to the seafloor. A SIMRAD EK–
500 echosounder with a split-beam transducer operating at 38 kHz with a 7º×6.9º beam width 
and 100-ms pulse duration was used during these surveys. Calibration of the echosounder was 
done in situ at a depth of 25 m, using a copper sphere with a known TS value (-33.6 dB) and 
specialized software. Both the copper sphere and the software were provided by SIMRAD. 
Movies+ software, developed by the Institut français de recherche et d’exploitation de la mer 
(IFREMER) was used with the built-in EK–500 echointegrator for the analysis of the 
acquired data. Experimental fishing was carried out using a mid-water trawl, with a vertical 
opening of about 6 to 7 m. Trawls were made whenever a significant amount of small-
pelagic-fish schools were observed with the echosounder. The speed of the vessel was about 3 
to 4 knots during trawling. A netsonde sonar, attached to the mouth of the trawl, was used to 
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monitor the catch in real time. The catch was then sorted by species and the length–frequency 
composition was determined for each species. 
 
 
2.3 TS analysis  
 
Of the 128 hauls made during our surveys, sardine was present in 55 of them. We limited 
ourselves only to hauls in which sardine represented more than 70% of the catch. Therefore, 
only 18 hauls were retained for TS analysis.   
 
For each haul we established the size–frequency distribution (Table 1) and we sought the 
tables of the corresponding TS, as illustrated in the example below for haul no. 21 of the 
OASIS 6 survey (2002) (Fig. 1 and Table 2). The water column was divided into ten layers. 
Depending on the duration of the haul and the position of the schools in the water column, 
one or several TS values were attributed to the same size–frequency distribution.    
 
 
Table 1. Distribution of sardine size frequencies for haul no.21, OASIS 6, 2002. The length mode 
(15.5 cm) is in bold. 
 

Lt 
(cm)  9.0  9.5  10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 
%  0.4     0.4     1.8 0.7  1.1 11.9 33.9 26.4 14.1 4.3  1.1  0.4 

 
 
 

 
 
Figure 1: Sample of the echogram during haul no21 of OASIS 6, 2002.   
 
 
Table 2. Count of the TS for each layer in haul no.21 of OASIS 6, 2002. The circle indicates the TS 
mode for layer S6 where the sardine school is present. 
 

 
 



MedSudMed Technical Documents No.5 

 93

From the two distributions presented in Table 2 and in Figure 2, we took only the modes and 
thus obtained the modal lengths according to the TS (Table 3). The catch in some hauls was 
bimodal. Data from those hauls were not used in the final result.    
 
 
Table 3. Length and corresponding TS modes. 
 

Mode (cm) 10.0 11.0 11.0 11.0 11.0 11.0 12.0 13.0
Ts (dB) -53.50 -53.40 -53.25 -51.90 -54.75 -53.57 -52.50 -52.50
Mode (cm) 14.0 14.0 15.0 15.5 16.0 16.0 17.5  
Ts (dB) -49.50 -50.25 -51.75 -49.50 -51.75 -50.00 -48  

 
 
2.4 School descriptor extraction and classification  
 
 
2.4.1 Descriptor extraction  
 
Movies+ uses the digital output of the EK–500 to display echograms on a PC and record them 
for later use. Algorithms included in the software make it possible to recognize individual 
schools of fish on the echograms and to extract a set of school descriptors (Diner et al., 2001). 
These descriptors can be used to identify the species of each school (Haralabous and 
Georgakarakos, 1996; Scalabrin, 1996) (Fig. 2, Table 4). 
 
About 50,000 schools have been detected during these surveys. For the training of the chosen 
classifier, only those schools whose species identity has been established by experimental 
trawling can be used. If the catch was monospecific (i.e. 95% of the fish in the net belonged 
to one species), then all the schools detected during the trawling are considered to belong to 
that species (Scalabrin, 1996). This reduced the number of usable schools to less than 2,000, 
most of which were schools of sardines, anchovies and horse mackerel. It was considered 
preferable to use the same number of training examples for each species, so that the classifier 
would not be biased and would learn to recognize one species better than the others. The 
amount of usable data was thus reduced even more, since the number of horse mackerel 
schools detected was considerably less than the number of sardine and anchovy schools. 
Finally, only 120 schools were used for the training, 40 from each species; and 137 schools 
were used for testing the classifiers, comprising 59 sardine schools, 51 anchovy schools and 
29 horse mackerel schools.  
 



MedSudMed Technical Documents No.5 

 94

 
 
Figure 2. Some of the school descriptors used in this study (Diner et al., 2001)  
 
 
 
Table 4: School descriptors used in this study 
 

Descriptors  Units 
E: mean energy  backscattered by the school per 
unit of surface 

mV2/ 
m2 

Sv: total reverberation index of the school   dB 
Vmoy: Mean amplitude of samples (pings) 
backscattered by the school 

mV 

Coefficient of variation of the amplitude of the 
samples  

% 

Prof: Bottom depth  m 
Amin: minimum altitude  m 
Pmin: minimum depth  m 
Lmax: maximum length  m 
Hmax: maximum height  m 
Elon: Elongation = Hmax/Lmax % 
Peri: Perimeter  m 
A: Area  m2 

Dfrt: Fractal dimension  = 2ln(P/4)/lnA   
Arel: Relative altitude = [Amin + (Hmax/2)]/ 
Prof 

% 
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2.4.2 Classification using neural networks 
 
Artificial neural networks are a programming method based on a mathematical approximation 
of the functioning of human brain cells. A neural network (ANN) can be seen as a set of 
interconnected nodes implementing a mapping function from an input space (in this case the 
school descriptors) to one of several output categories or classes (in our case, a species of 
fish) (Fig. 3). The network is initialized with random values (or almost), then it is trained by 
successive examples of the problem to be solved, until it converges to the desired mapping. 
ANN have started to replace traditional statistical techniques in many modeling and 
classification problems, although some studies have criticized them for being a black-box 
method that does not provide any information on the models they approximate. A good 
overview of ANN, as well as their use in ecology and marine sciences, can be found in 
Recknagel (2003). 

 
 
Figure 3. A standard feed-forward ANN 
 
 
Two types of neural networks were used in this study: multi-layer perceptrons (MLP) and 
probabilistic neural networks (PNN). MLPs are trained by incrementally reducing the error 
between the real and the desired output for successive training examples. Several algorithms 
can be used for this purpose, the most common method being the gradient descent algorithm, 
in which the network weights are adjusted according to the following rule:  
 

i
ii w

MSEww ∂
∂−=+ η1  

 
where wi is the network at the ith increment, η is the learning rate, and MSE is the mean-
square error between the desired output and the real output.  
 
For this study we chose a variant of this rule, in which the weight adjustment is in accordance 
with: 
 

( ) 11 −+ −−∂
∂−= ii

i
ii wwmcw

MSEiww η  

 
Using a variable learning rate η(i) increases the learning speed, and adding a momentum term 
mc|wi–wi–1| improves the chances of avoiding local minima. 
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PNNs (Specht, 1990; Ganchev et al., 2002; Grman et al., 2001) are a type of ANN in which 
the training examples are used to estimate each class’s probability distribution, and then the 
Bayes decision rule is used to determine the most likely class given the input vector. The 
Bayes decision rule can be formulated as: 

 
iClassx⊂  if )/()/( xClassPxClassP ji >  for all j ≠ i. 

 
The posterior probability P(Classi/x) is given by: 
 

)()/()/( iii ClassPClassxPxClassP =  
 

The prior probability P(x/Classi) is estimated using the Parzen window technique (Specht, 
1990). Matlab software was used for the design and simulation of the ANN.  
 
 
3 Results 
 
 
3.1 Results of TS analysis  
 
The values that we used in the study are represented in Table 5.  
 
 
Table 5. Modal length and mean TS. 
 

Modal length (cm) 10.0  11.0 12.0 13.0 14.0 15.0 15.5  16.0  17.5 
TS mean -53.5  -53.4 -52.5 -52.5 -49.9 -51.8 -49.5  -50.9  -48.0 

 
 
A linear correlation is established between TS and log(L) (Fig. 4) and we obtained:   
TS=20.568log(Lt)–74.617    with R2=0.77  
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TS
 (d

B
)

 
 
Figure 4. Graph of TS=f(logLt). 
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If we consider that  
 
TS=20log(Lt)+c 
 
then 20log(Lt)+c=20.568log(Lt)–74.617. 
 
Therefore,  
 
c=0.568log(Lt)–74.617  
 
Thus for each length Lt, we have a value of c (Table 6). 
 
 
Table 6. Values of Lt and c; c=f(Lt) 
 

Lt(cm) 10.00  10.50 11.00 11.50 12.00 12.50 13.00  13.50 
c -74.05  -74.04 -74.03 -74.01 -74.00 -73.99 -73.98  -73.97 
Lt(cm) 14.00  14.50 15.00 15.50 16.00 16.50 17.00  17.50 
c -73.97  -73.96 -73.95 -73.94 -73.93 -73.93 -73.92  -73.91 

 
For sardines with a total length (Lt) between 10 and 17.5 cm, Cmean = –73.97 and the Foote 
equation becomes:  
 
TS=20log(Lt)–73.97 
 
 
3.2 Discussion of TS analysis 
 
Several relations for sardine TS are in use in other countries, as indicated below (Table 7)  
 
 
Table 7. Various TS in use for the sardine. 
 

Author  TS for 38 kHz  
Spain (Ben Abdallah et al., 2000)  20log(Lt)–72.6  
ICES (3) (Diner and Marchand, 1995) 20log(Lt)–71.2  
Italy (10) (Patti et al., 2000)  20log(Lt)–70.44  

 
 
The obtained value of c, compared with those in use elsewhere, is relatively low. Indeed, the 
TS factor depends on several aspects, such as the physiological state of the fish, its behaviour 
and the time of day (Ona, 1999). In our case, all the measurements were carried out during the 
day and in the summer, which reduced the variations due to diel and seasonal factors. 
Moreover, during the day, the sardines gather in schools close to the bottom, consequently 
their swim bladders will have a lower volume, which may partly explain the difference 
between the obtained value and that recommended by ICES.  
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3.3 Results of classification using ANN 
 
Several different configurations of MLP were designed and trained, and we finally settled on 
a three-layer network with 21 input neurons, 17 hidden neurons and 3 output neurons. For the 
PNN, the design was pretty straightforward; the only factor that we had to choose was the 
spread factor, which could be chosen manually. The rest of the network parameters (number 
of neurons, layers, etc.) are a function only of the training set and the training algorithm. The 
results are in Tables 8 and 9. 
 
 
Table 8. Confusion matrix: classification rates using MLPs. 
 

Predicted species Real species 
Anchovy Horse mackerel Sardine Unassigned 

Anchovy 100% 0% 0% 0% 
Horse mackerel 0% 93% 3.5% 3.5% 
Sardine 1.8%  0% 58% 40.2% 

 
 
Table 9. Confusion matrix: classification rates using PNNs. 
 

Predicted species   Real species  
Anchovy Horse mackerel Sardine 

Anchovy 100% 0% 0% 
Horse mackerel 0% 96.5% 3.5% 
Sardine 7% 2% 91% 

 
 
3.4 Discussion of ANN classification 
  
Tables 8 and 9 show that PNNs perform better than MLPs in fish-school classification. It has 
already been shown by Ganchev et al. (2002) and Grman et al. (2001) that PNNs are better 
than MLPs in other typical classification problems, such as voice recognition or fault 
recognition, especially when the training set is relatively small (as in our case). Moreover, it 
may be that PNNs are more robust than MLPs and are thus more suitable for dealing with the 
noise inherent in the training examples of fish schools.    
 
 
4. Conclusion 
 
A new relationship between TS and total length has been found for the sardine (Sardina 
pilchardus) off the Tunisian coast for the size range 9–18 cm and for the acoustic frequency 
of 38 kHz: 
 

TS=20log(Lt)–73.97 
 
The obtained result must be regarded as provisional, because it does not cover all the sardine 
size-classes. Moreover, this relation can vary with the physiological state of the animal (stage 
of sexual maturity and fat content). However, this relation can be used under the same 
conditions in which it was established, but it is necessary to update it continuously, because 
any change not taken into account can affect the biomass estimation. For the school 
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classification using ANN, the training data have also to be constantly updated. This will lead 
to better classification results for the three studied species, and the addition of other species to 
the training set.  The results of future surveys are necessary before any definitive 
classification method can be achieved.  
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